Dendrogram analysis of the first CARMA Large Area Star formation Survey regions

Shaye Storm University of Maryland

June 8, 2013 CARMA Symposium

<u>Co-authors</u>: Lee Mundy (UMD), Peter Teuben (UMD), Leslie Looney (UIUC), Katherine Lee (UIUC), Manuel Fernandez-Lopez (UIUC), Erik Rosolowsky (UBC), *the CLASSy Collaboration*

Dendrogram analysis of the first CARMA Large Area Star formation Survey regions

Big Picture	<u>How do dense cores form and evolve to form stars?</u> • Turbulence, magnetic fields, self-gravity, heating, chemistry
What We Know and Don't Know about Turbulence	 Observe supersonic gas in GMCs Observe turbulent scaling laws What are the turbulence drivers? Can we detect predicted signatures of turbulence driven core formation?
Observational Experiment for this Talk	 Identify dense gas structures N₂H⁺(1-0), n > 10⁵ cm⁻³ Characterize their velocity field
Hypothesis	 Expect differences in turbulent properties • <u>NGC 1333:</u> many young protostars driving outflows • <u>Barnard 1:</u> mix; SW= filamentary without protostars

Observational Experiment for this Talk

Identify dense gas structures (n > 10⁵ cm⁻³)
Characterize their velocity field

Not an issue of choosing the CORRECT object identification method, but choosing the MOST APPROPRIATE method

Object Identification Methods

Molecular Cloud structure is mostly hierarchical ... dendrograms avoid small-scale segmentation and naturally capture large-scales in addition to the small-scales

Object Identification Methods: Dendrogram 1-D Example

Molecular Cloud structure is mostly hierarchical ... dendrograms avoid small-scale segmentation and naturally capture large-scales in addition to the small-scales

Capturing Large and Small Scales with Dendrogram Approach

Facilitates an investigation of the turbulent properties of dense gas at different scales in a way that clumpfind-like segmentation would not allow

Dendrogram Implementation: A New Clustering Method

Forcing binary clustering results in "phantom" branching structure where > 2 structures should merge considering the noise limitations of real data

Results: Non-Binary Dendrogram of NGC 1333 $N_2H^+(1-0)$

• Represents the observable hierarchy of emission within the limits of the noise

• Meaningful list of structures not polluted by phantom branching

Results: Non-Binary Dendrogram of NGC 1333 $N_2H^+(1-0)$

Turbulence ... across different spatial scales within a single cloud ... across different clouds at different stages of evolution?

Results: Non-Binary Dendrogram of NGC 1333 $N_2H^+(1-0)$

Fitted Line Dispersion Maps

Turbulence ... across different spatial scales within a single cloud ... across different clouds at different stages of evolution?

Results: Line Dispersion vs. Size in NGC 1333 Gas Structures

Capturing mean internal turbulence

Results: Non-Binary Dendrogram Structure of Barnard 1 $N_2H^+(1-0)$

Results: Cross-Cloud Comparison Barnard 1 vs. NGC 1333

Results: Cross-Cloud ComparisonBarnard 1vs.NGC 1333

Results: Cross-Cloud ComparisonBarnard 1vs.NGC 1333

<u>Summary</u>

 Dendrograms used to decompose dense gas emission and explore kinematics of structures in CLASSy clouds

 Created statistically meaningful sample of gas structures with new non-binary clustering version of dendrograms

• Compared turbulent linewidths of NGC 1333 and B1 gas structures:

Star formation feedback correlates with supersonic turbulence at the ~0.01 – 0.5 pc scale
B1 filament is a great region to probe turbulence driven star formation theories

Sampling of Future and Ongoing CLASSy Work		
Extend to other CLASSy regions, molecules	Complete L1451 and Serpens South observations/mapping (Fall), and do same analysis for a complete Perseus picture and Perseus-Serpens comparison L1451	
Complementary approaches to turbulence	Explore turbulent energy cascade with statistical analysis of velocity fields: • Two-point correlations statistics (e.g., structure function), PCA	
Connection to Magnetic Fields?	 Explore effects of magnetic fields on turbulent energy cascade Observable anisotropies in velocity field scaling laws? 	
Connection to Dust	Tie gas together with dust to explore virial boundedness of identified gas structures N_2H^+ Dust	
Morphology and Connection to YSOs	Use dendrogram decomposition for: • Characterizing morphology of dense gas from ~0.01 – 1 pc • Connecting with existing young stellar content	