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Preface

What lies in front of you is an accompanying guide to some of the software you might find useful this school.
It is still very much work in progress, with many sparse and unfinished sections.

A large number of programs are within the NEMO, Starlab and now AMUSE packages, though a number of
useful programs and smaller packages that are available elsewhere have been assembled here and made avail-
able via the manybody environment. See also Appendix B for a more detailed description of this manybody
environment.

One word of caution though: this Guide is not a coherent story that you should necessarily read front to
back, it is more encyclopedic and will hopefully give you an impression of the capabilities of this software
in case you may need it during this week or in your subsequent research. On most topics in this guide you
can find much more in-depth information in other manuals and of course the source code (needless to say,
we would like to advocate some type of open source policy for our codes).

Unix Shell

The manybody guide assumes some knowledge of Unix. This means Linux, Solaris and MacOSX should
be fine, but although cygwin on MS-Windows gets fairly close, your editor couldn’t stomach some of its
limitations1. Most examples show simple snippets of C-shell command lines; their prompt (e.g. 2%) contains
a counter which is normally started at 1 for each section for easy reference. There are only a few minor
places where these csh and sh examples would differ. We just remind you of the most important ones:

1. Redirect and merge stderr and stdout into one file (see also NEMO’s redir program):

sh: p1 > log 2>&1

csh: p1 >& log

2. Redirect stdout and stderr into separate files:

sh: p1 > out 2>err

csh: (p1 > out) >& err

3. Pipe both stdout and stderr into the next program:

1YMMV, as they say in this business

3
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sh: p1 2>&1 | p2

csh: p1 |& p2

Also noteworthy is that in most places where a random seed is used (e.g. the NEMO seed=0 keyword would
take a new seed based on the current date and time) a fixed seed is taken (usually seed=123) so the example
can actually be exactly reproduced sans compiler and optimization differences. In “real life” you may not
always want to do this!

Python shell

Examples

You will find shell script examples in the manual, at the top of the example you should find a line like

# File: examples/ex1

which means the example can be found in the directory

$NEMO/usr/manybody/examples/ex1

Getting More Help

After your account has been setup to use the manybody environment (see also Appendix A), there are several
ways to get more help besides reading this document:

• For most programs the -h and/or the --help command line argument will give a short reminder of the
options and their defaults. This is true for NEMO as well as Starlab programs. For NEMO programs
the option help=h will also give much more extensive help on the keywords.

• The Unix man and gman commands can be used to view manual pages for all NEMO programs. Notably
the index(1) and programs(8) manual pages given an overview of most commands.

• For those packages that have html formatted information, they are linked in manybody/index.html,
whereever this may reside on your system.

• Buy your friendly teachers a Coffee or Beer

Acknowledgements

I would like to thank my co-authors in spirit, Douglas Heggie, Piet Hut, and Junichiro Makino for their
contributions, Simon Portegies Zwart and Christian Boily for the MODEST schools in Amsterdam and
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Strasbourg respectively, where much of this material was first written down. In the true spirit of open
source, numerous authors have contributed their software, which you can find on the DVD. Without their
generous contributions this guide would not be half the size and a quarter of the contents. Hopefully we will
be able to instill this spirit on the reader too.
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Chapter 1

Introduction

Although we will primarely cover direct N-body integrators in this school, we should recall several types are
commonly in use in astrophysics:

1. Self-consistent direct N-body integrations1

~̈r = −G
∑ m

∆r3
∆~r (1.1)

2. Orbit integrator in a general Gravitational Potential2

~̈r = −∇Φ(~r) (1.2)

3. Orbit integrator in a Flow Potential3

~̇r = ~v(~r) (1.3)

Another way to divide up the field is by methodologies. There are arguably three ways to solve the N-
body problem: direct Particle-Particle (PP), Particle-Mesh (PM) and Smooth Field Particle (SFP), also
sometimes referred to as Self Consistent Field (SCF) method. Various hybrid schemes also exist, e.g. P3M.

1See Table 2.1
2potcode in NEMO
3flowcode in NEMO

7
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Chapter 2

Integrators

We have made a few N-body integrators available for this school, most are summarized in Table 2.1. A brief
description of all of them will follow, and for some a more detailed example will follow how they can be used
in the manybody environment.

Table 2.1: A few good N-body codes
code method author(s)/version data

format

firstn PP von Hoerner (1960; via Aarseth)
nbody0 PP Aarseth (Binney & Tremaine) s
nbody{1,2,4} PP Aarseth (w/ NEMO interface) b/s
nbody{6} PP Aarseth b
fewbody PP Fregeau d
hnbody PP Rauch & Hamilton 2004
kira PP Starlab team d
treecode PP Barnes & Hut 1986, Hernquist 1989 s
gyrfalcON PP Dehnen 2000 s
gadget PP Springel 2001, 2005 g
scfm SFP Hernquist 1992 205
quadcode SFP Barnes & White 1986 s
CGS SFP Trenti et al. 2005
galaxy PM Sellwood b
superbox PM Fellhauer et al. 2000
TPM PM Bode
partree PP Dubinski

9



10 CHAPTER 2. INTEGRATORS

2.1 firstn

The first N-body code (skipping the pioneering analog experiments by Holmberg (1941)1 was arguably
written by von Hoerner (1960) and has recently been resurrected by Aarseth and is also available as firstn
in NEMO. Here is an example running the code for two crossing times on a self-generated 16-body Plummer
sphere configuration

# File: examples/ex1

# sample input parameter file

1% cat $NEMO/usr/aarseth/firstn/input

16 12.0 0.0 1.0 2.0

1.0 1.0 1.0 0

0.5 0

# integrate

2% firstn < $NEMO/usr/aarseth/firstn/input

N = 16 ETA = 12.0 EPS = 0.000

T = 0.0 Q = 0.38 STEPS = 0 DE = 0.000000 E = -0.357554 TC = 0.0

ERRORS RCM VCM DE/E DZ 0.00E+00 0.00E+00 0.00E+00 0.00E+00

T = 2.3 Q = 0.55 STEPS = 1536 DE = 0.000000 E = -0.357554 TC = 1.4

ERRORS RCM VCM DE/E DZ 3.17E-16 7.10E-16 2.38E-07 2.97E-08

T = 4.5 Q = 0.53 STEPS = 3624 DE = 0.000001 E = -0.357554 TC = 2.7

ERRORS RCM VCM DE/E DZ 2.26E-16 8.86E-16 7.73E-07 2.99E-08

# get some online help on this program

3% man firstn

It simply prints out the time T, the virial ratio Q (Q=T/W, thus 0.5 means virial equilibrium), number
of STEPS taken, energy conservation and total energy, and another line on the center of mass motion. No
actual snapshots are stored in this simulation, although the code layout is very similar to that of nbody0,
and could be adapted quite easily (see below)

You can find the source code in $NEMO/usr/aarseth/firstn/. For an explanation of the input parameter
file, see the Unix manual page for this program.

2.2 nbody0

A basic implementation of the variable timestep integrator (an essential ingredient to collisional stellar
dynamics) was published in Appendix 4B in Binney & Tremaine (1987). You can find this implementation
in Fortran (nbody0) as well as an identical C (nbody00) in NEMO, with both a simple ASCII dataformat,
as well as the NEMO snapshot format. Aarseth likes to refer to this version as the “Mickey Mouse” version,
and really prefers you to use the full version, nbody1, or better yet, nbody4 or nbody6 (see below).

1see also mkh41
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# File: examples/ex2

# reminder to the valid command line parameters and defaults

1% mkplummer help=

mkplummer out=??? nbody=??? mfrac=0.999 rfrac=22.8042468 seed=0 time=0.0 zerocm=t

scale=-1 quiet=0 massname= massexpr=pow(m,p) masspars=p,0.0 massrange=1,1 headline= VERSION=2.6a

# generate a Plummer sphere with 256 bodies, but with reproducable data

2% mkplummer p256.in 256 seed=123

# what does nbody00 do?

3% nbody00 help=

nbody00 in=??? out=??? eta=0.02 deltat=0.25 tcrit=2 eps=0.05 reset=t f3dot=f options= VERSION=2.0a

# some more extensive inline help on the keywords

4% nbody00 help=h

in : Input (snapshot) file [???]

out : Output (snapshot) file [???]

eta : Accuracy parameter - determines timesteps [0.02]

deltat : When to dump major output [0.25]

tcrit : When to stop integrating [2]

eps : Softening length [0.05]

reset : Reset timestep after datadump (debug) (t|f) [t]

f3dot : Use more advanced timestep determination criterion? [f]

options : Optional output of ’step’ into AUX []

VERSION : 13-mar-04 PJT [2.0a]

# finally, integrate this for about 2 crossing times

5% nbody00 p256.in p256.out

time = 0 steps = 0 energy = -0.257297 cpu = 0.00117 min

time = 0.25 steps = 2519 energy = -0.257303 cpu = 0.006 min

time = 0.5 steps = 5428 energy = -0.257306 cpu = 0.0118 min

time = 0.75 steps = 8207 energy = -0.2573 cpu = 0.0173 min

time = 1 steps = 10914 energy = -0.257304 cpu = 0.0228 min

time = 1.25 steps = 13543 energy = -0.25731 cpu = 0.0282 min

time = 1.5 steps = 16461 energy = -0.257311 cpu = 0.034 min

time = 1.75 steps = 19345 energy = -0.257315 cpu = 0.0398 min

time = 2 steps = 22265 energy = -0.257313 cpu = 0.0462 min

Time spent in searching for next advancement: 0.1

Energy conservation: -1.59973e-05 / -0.257297 = 6.21707e-05

Time resets needed 0 times / 9 dumps

Notice that when running mkplummer the first two parameters (in= and nbody=) were not explicitly named,
because they were given in the order known to the program. This is a feature of the NEMO command line
interface.

2.3 nbody1, nbody2

These two original Aarseth codes are both available with a NEMO wrapper program (runbody1 and runbody2).
It will run the compiled Aarseth fortran code (nbody1 and nbody2)) in its own run directory and optionally
produce snapshot files for further analysis. nbody2 is much like nbody1, except it treats forces with the
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Ahmad-Cohen neighbor scheme (see Ahmed Cohen 1973).

# File: examples/ex3

1% mkplummer p100 100 seed=123

2% runbody1 in=p100 outdir=run1 nbody=100

N NRAND ETA DELTAT TCRIT QE EPS

100 0 0.020 0.2 2.0 2.0E-05 5.0E-02

OPTIONS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 0 2 0 1 0 0 0 0 1 0 0 0 0

SCALING: SX = 0.53 E = -4.69E-01 M(1) = 1.00E-02 M(N) = 1.00E-02 <M> = 1.00E-02

SCALING PARAMETERS: R* = 1.00E+00 M* = 1.00E+02 V* = 6.56E-01 T* = 1.49E+00

T = 0.0 Q = 0.00 STEPS = 0 DE = 0.000000 E = -0.251037 TC = 0.0

<R> = 1.99 RCM = 0.0000 VCM = 0.0000 AZ = 0.00000 T6 = 0 NRUN = 1

BINARY 71 92 0.010 0.010 0.0 0.2751 1.0 0.5503 1.10 1.000 0

BINARY 87 92 0.010 0.010 -0.1 0.0756 6.8 0.1512 1.32 1.000 0

...

T = 5.7 Q = 0.57 STEPS = 37920 DE = -0.000003 E = -0.251050 TC = 2.0

<R> = 0.85 RCM = 0.0000 VCM = 0.0000 AZ = -0.00001 T6 = 8 NRUN = 1

END RUN TIME = 5.66 CPUTOT = 0.01 ERRTOT = -0.00002

Here you are also witnessing a current quirk of this wrapper: Although the number of bodies is known from
the input file, it has to be re-specified.

Notice that at T=0 two binaries were already found, in fact star 92 was involved in both binaries.

2.4 nbody4

The Aarseth nbody4 code has been recently made available with a GRAPE interface (a.k.a. Nbody4). A
standalone version (a.k.a. Brut4) is available as nbody4 in NEMO. A NEMO frontend, much like the previous
ones, is available as runbody4. One novel addition to this version of nbody4 is the capability of running one
of several stellar evolution codes (e.g. Eggleton, Tout & Hurley, Chernoff–Weinberg). An extensive manual
has recently been made available on how to run it (Aarseth, 2006). Currently the only other code capable
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of doing combined dynamical and stellar evolution is the kira code in Starlab. A very newe project, muse2,
aims to modularize this approach. This is now superseded by the AMUSE project3,

2.5 nbody6

This code is available as is, and with minor modifications could be made to run via clones of runbody4.
Fairly extensive documentation is available on how to modify and run the code.

nbody6 is available in $NEMO/usr/aarseth/nbody6, There is also a recent manual (see Aarseth 2004). Run-
ning nbody6 is very similar to nbody4

2.6 nbody6++

Spurzem (see Khalisi & Spurzem 2003) published an MPI enabled version of NBODY6, dubbed nbody6++4.
The input parameter list (including the well known KZ() and BZ() arrays, now counts 83 (nbody1 counted
35 parameters, nbody2 has 42) !

2.7 fewbody

Fregeau et al. (2004) released fewbody, a software package for doing small-N scattering experiments. It
handles an arbitrary number of stars, and understands arbitrarily large hierarchies. For example, if the
outcome of a scattering experiment between two triples is a stable hierarchical triple of binaries, fewbody is
smart enough to understand that the system is in that configuration, and terminate the integration once it
is considered stable. fewbody uses full pairwise K-S regularization and an 8th order Runge-Kutta Prince-
Dormand integrator to advance the particles’ positions, binary trees as its internal data structures, both to
construct the hierarchies, and also to isolate unperturbed hierarchies from the integrator, and the Mardling
stability criterion to assess the stability of hierarchies at each level.

fewbody also comes with an OpenGL vizualizer called GLStarView, which can visualize a simulation as it is
being computed by directly piping the data. You can find fewbody version 0.21 in $NEMO/usr/fregeau, as
wel as glstarview. Within NEMO the glnemo2 visualization tool has similar capabilities.

There are 4 programs that come with fewbody: binbin, binsingle, triplebin and cluster, each of which
understand the -h flag if you get lost. You should however read at least Fregeau et al. (2004) before using
the code.

# smash a binary and single star into each other

1% binsingle -D 1 > try1

2http://www.science.uva.nl/sites/modesta/wiki/index.php/Main Page
3http://www.amusecode.org
4and no, it is not rewritten in C++
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PARAMETERS:

ks=0 seed=0

m0=1 MSUN r0=1 RSUN

a1=10 AU e1=0 m10=1 MSUN m11=1 MSUN r10=1 RSUN r11=1 RSUN

vinf=0.2 b=3.1 tstop=1e+06 tcpustop=3600

tidaltol=1e-05 abs_acc=1e-09 rel_acc=1e-09 ncount=500 fexp=3

UNITS:

v=v_crit=11.5357 km/s l=10 AU t=t_dyn=4.10953 yr

M=1.5 M_sun E=3.97022e+45 erg

OUTCOME:

encounter complete: t=439.506 (1806.16 yr) nstar=2 nobj=1: [0 1:2] (binary)

FINAL:

t_final=439.506 (1806.16 yr) t_cpu=0.26 s

L0=0.660373 DeltaL/L0=1.24727e-08 DeltaL=8.2366e-09

E0=-0.213334 DeltaE/E0=1.5916e-06 DeltaE=-3.39541e-07

Rmin=0.00092399 (1.98608 RSUN) Rmin_i=1 Rmin_j=2

# view the simulation using Fregeau’s program

2% glstarview < try1

# and since it uses Starlab ’dyn’ format, xstarplot can be used as well

3% xstarplot < try1

2.8 hnbody

HNBody (Hierarchical N-body, see Rauch & Hamilton 2004) is optimized for the motion of particles in self-
gravitating systems where the total mass is dominated by a single object; it is based on symplectic integration
techniques in which two-body Keplerian motion is integrated exactly. For comparison, Bulirsch-Stoer and
Runge-Kutta integrators are also available. Particles are divided into three basic groups: HPWs (Heavy
Weight Particles), LWPs (Light Weight Particles), and ZWPs (Zero Weight Particles).

You can find the code 5 and support files in $NEMO/usr/hnbody. The following example illustrates how to
run a simulation with the Sun and the Jovian planets:

1% hnbody -h

HNBody version 1.0.3 (linux-x86), released 2004/03/12.

See http://janus.astro.umd.edu/HNBody/ for current information.

Relay questions and bug reports to Kevin Rauch <rauch@astro.umd.edu>.

Usage: hnbody [options] [file1.hnb ...]

Options:

-b Benchmark machine’s HNBody performance and exit.

5HNBody is under very active development, and source code will be available for download later this year. The current

version, 1.0.3, is only available in binary form
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-h Display this help message and exit.

-l LFILE Log diagnostic output to LFILE instead of standard output.

-q Quiet mode--do not produce diagnostic output.

-r RFILE Set kill recovery file name to RFILE (default: recover.dat).

(Specify /dev/null to disable signal handling.)

-s SFILE Restart the integration using SaveFile SFILE.

(The original input files must also be given.)

-t TCPU Estimate required CPU time; use TCPU seconds of effort and exit.

(No output files will be created or modified.)

-v Display driver/HNBody version information and exit.

2% hnbody $NEMO/usr/hnbody/input/jovian.hnb

#

# HNBody version 1.0.3 (linux-x86), released 2004/03/12.

# See http://janus.astro.umd.edu/HNBody/ for current information.

# Relay questions and bug reports to Kevin Rauch <rauch@astro.umd.edu>.

#

Integrator = Symplectic

IntegCoord = Jacobi Order2 Drift-Kick

Corrector = True

AngleUnit = rad

LengthUnit = AU

MassUnit = Msun

TimeUnit = d

StepSize = 365.25

Tinitial = 0

M = 1.00000597682

N = 6

NLWPs = 1

InputOrder = Mass x1 x2 x3 v1 v2 v3

HWP = 0.000954786104043042 3.409530427945 3.635870038323 0.03424028779975 -0.005604670182013 0.005524493219597 -2.663981907247e-06

HWP = 0.00028558373315056 6.612079829705 6.386934883415 -0.1361443021015 -0.004180230691977 0.004003576742277 1.672376407859e-05

HWP = 4.37273164545892e-05 11.16769742623 16.04343604329 0.3617849409933 -0.003265538550417 0.002070723353855 -2.176677219661e-05

HWP = 5.17759138448794e-05 -30.17366005485 1.917641287545 -0.1538859339981 -0.0002241622739519 -0.003107271885463 3.583760257057e-05

LWP = 1e-30 -21.381833467487 32.077998611553 2.4924585571843 -0.0017760562614312 -0.0020608701590214 0.00065809506351528

Tfinal = 365250000

OutputInterval = 36525000

OutputFiles = plan%d.dat

OutputOrder = Time SemiMajorAxis Eccentricity Inclination LongAscendNode ArgPeriapse MeanAnomaly

OutputCoord = Bodycentric

OutputDigits = 16

SaveInterval = 36525000

SaveFiles = save.dat

EnergyInterval = 36525000

EnergyFile = energy.dat

#

Starting integration (Tinitial = 0).

There are 6 particles in the system (5 HWPs, 1 LWP, 0 ZWPs).

SaveFile save.dat written (Time = 0, Steps = 0).

Energy errors: 0.0000e+00 ave, 0.0000e+00 rms, 0.0000e+00 max

Momentum errors: 0.0000e+00 ave, 0.0000e+00 rms, 0.0000e+00 max

Estimated CPU time required: 10.2 s.

SaveFile save.dat written (Time = 36525000, Steps = 100000).

Energy errors: 6.4810e-08 ave, 9.1656e-08 rms, 1.2962e-07 max

Momentum errors: 1.3391e-15 ave, 1.8938e-15 rms, 2.6783e-15 max
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CPU time since start: 1.020 s (1.0200e-05 s per step)

Elapsed time since start: 1.098 s (92.9% CPU ave; 92.9% local)

Approx. time remaining: 9.883 s (9.883 s local)

...

Integration complete (Tfinal = 365250000, Steps = 1000000).

Energy errors: 6.0274e-08 ave, 7.5161e-08 rms, 1.2962e-07 max

Momentum errors: 5.3075e-15 ave, 6.8479e-15 rms, 1.4510e-14 max

CPU time since start: 10.210 s (1.0210e-05 s per step)

Elapsed time since start: 10.686 s (95.5% CPU ave; 0.0% local)

You will find 6 files, plan0.dat .. plan5.dat representing the sun, and planets Jupiter through Pluto.
HNbody comes with a set of supermongo6 macros especially designed for the ASCII tables that are produced.

2.9 kira

kira is the flagship integrator of the starlab package. It is also one of the few codes that has stellar evolution
integrated with stellar dynamics. kira can optionally be compiled with the GRAPE libraries, to run on the
GRAPE hardware, which of course speeds up the gravity computations substantially.

examples/ex4

# generate a Plummer sphere with 256 bodies, again with reproducable seed

1% makeplummer -n 100 -s 123 > k100.in

rscale = 0.979095

com_pos = 0 0 0

# integrate to T=100, output steps D=10

# notice the csh method of splitting stdout and stderr

3% (kira -t 100 -D 0.2 < k100.in > k100.out) >& k100.log

# convert to NEMO snapshots

4% dtos k100.dat < k100.out

# look at the lagrangian radii

5% snapmradii k100.dat log=t | tabplot - 1 2:10 0 100 -1 1 line=1,1

# integrate with nbody0, need to convert the data first

6% dtos k100.indat < k100.in

7% nbody00 k100.indat k100.outdat eta=0.01 deltat=0.2 tcrit=100

8% snapmradii k100.outdat log=t | tabplot - 1 2:10 0 100 -1 1 line=1,1

9% hackforce k100.dat - |\

snapcenter - - "-phi*phi*phi" |\

snapmradii - log=t |\

tabplot - 1 2:10 0 100 -1 1 line=1,1 xlab=Time ylab="log(M(r))"

10% hackforce k100.outdat - |\

snapcenter - - "-phi*phi*phi" |\

snapmradii - log=t |\

6the sm program itself is however not publicly available
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tabplot - 1 2:10 0 100 -1 1 line=1,1 xlab=Time ylab="log(M(r))"

Figure 2.1: Lagrangian radii for kira (left, 10%) and nbody0 (right, 11%). Both have been recentered using
the potential −Φ3.

2.10 treecode

We keep several of the “original” Barnes & Hut (1986) treecodes in NEMO. The code is basically O(N log N),
which makes it very fast for large N compared to a direct full N-body code. The earliest version also includes
the curious self-gravity bug which can occur for large opening angles under peculiar conditions (see Salmon
& Warren 1994). The original version around which NEMO was originally developed is still available as
hackcode1. In this example we’ll set up a head-on collision between two Plummer spheres:

examples/ex5

# create our usual reproducable plummer sphere

1% mkplummer p1 512 seed=123

2% mkplummer p2 512 seed=456

# stack them , but offset them in phase space on a collision course

3% snapstack p1 p2 p3 deltar=5,0,0 deltav=-1.5,0,0

# integrate it for a little while

4% hackcode1 p3 p3.out freqout=5 tstop=10

init_xrandom: seed used 456
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nbody freq eps tol

1024 32.00 0.0500 1.0000

options: mass,phase

tnow T+U T/U nttot nbavg ncavg cputime

0.000 -0.1236 -0.8953 138503 60 75 0.00

cm pos -0.0000 0.0000 -0.0000

cm vel 0.0000 0.0000 -0.0000

...

tnow T+U T/U nttot nbavg ncavg cputime

10.000 -0.1184 -0.8230 111709 42 66 0.37

cm pos 0.0036 0.0134 -0.0027

cm vel 0.0007 0.0015 -0.0011

particle data written

5% snapplot p3.out nxy=3,3 xrange=-5:5 yrange=-5:5 times=0,1,2,3,4,5,6,7,8 nxticks=3 nyticks=3

# plot up a diagnostics diagram showing center of mass and energy conservation

6% snapdiagplot p3.out

321 diagnostic frames read

Worst fractional energy loss dE/E = (E_t-E_0)/E_0 = 0.0602005 at T = 3.03125

# show where the center of mass is, notice the out=. (equivalent to /dev/null)

7% snapcenter p3.out . report=t

-0.000000 0.000000 -0.000000 0.000000 0.000000 -0.000000

-0.000013 0.000002 -0.000012 -0.000073 0.000032 -0.000070

-0.000026 -0.000001 -0.000039 -0.000027 -0.000050 -0.000224

-0.000022 -0.000004 -0.000098 -0.000009 -0.000036 -0.000287

..

0.003339 0.012733 -0.002340 0.000667 0.001810 -0.000922

0.003468 0.013060 -0.002516 0.000708 0.001670 -0.000952

0.003603 0.013355 -0.002703 0.000738 0.001500 -0.001060

Note that this code does not conserve linear momentum, since the forces are not symmetric and thus do
not exactly cancel. Therefore you will see a drift in the center of mass (CM), as numerically shown by the
output of snapcenter. For a spherical system this should be a random walk.

In addition to hackcode1, there is also hackcode1 qp, which is slightly more expensive (but more accurate)
and adds quadrupole moment corrections to the force calculations.

2.11 gyrfalcON

Dehnen (2000) introduced a treecode with multipole expansions, which makes the code perform O(N), and
competitive to the Greengard & Rochlin FMM type codes. The code is written in C++ and fully integrated
in NEMO, i.e. it reads and writes snapshot files and uses the getparam user interface. In the next example
we’ll take the same input condition as before, the colliding Plummer spheres:
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Figure 2.2: Collision between two Plummer spheres (hackcode1) and the diagnostics overview
(snapdiagplot)

# --------------------------------------------------------------------------------------------------------------------

# "gyrfalcON p3 p3.outg tstop=10 step=0.2 hmin=5 VERSION=3.0.5I"

#

# run at Thu Jul 13 00:17:57

# by "teuben"

# on "nemo"

# pid 5815

#

# time E=T+V T V_in W -2T/W |L| |v_cm| tree grav step accumulated

# --------------------------------------------------------------------------------------------------------------------

0.0000 -0.1317041 1.0572 -1.1889 -1.1855 1.7835 0.031519 4.7e-10 0.00 0.01 0.02 0:00:00.02

0.031250 -0.1316010 1.0586 -1.1902 -1.1867 1.7840 0.031522 1.2e-09 0.00 0.01 0.01 0:00:00.04

0.062500 -0.1315449 1.0600 -1.1916 -1.1883 1.7841 0.031525 9.2e-10 0.00 0.00 0.00 0:00:00.05

0.093750 -0.1314929 1.0618 -1.1933 -1.1893 1.7857 0.031526 7.6e-10 0.00 0.01 0.01 0:00:00.07

. . .

9.8750 -0.1310892 0.52518 -0.65627 -0.65459 1.6046 0.031257 1.9e-08 0.00 0.00 0.00 0:00:04.78

9.9062 -0.1310836 0.52443 -0.65551 -0.65404 1.6037 0.031250 1.9e-08 0.00 0.01 0.01 0:00:04.80

9.9375 -0.1310790 0.52393 -0.65501 -0.65334 1.6039 0.031241 1.9e-08 0.00 0.00 0.00 0:00:04.81

9.9688 -0.1310589 0.52360 -0.65466 -0.65291 1.6039 0.031234 1.9e-08 0.00 0.01 0.01 0:00:04.83

10.000 -0.1311007 0.52330 -0.65440 -0.65275 1.6034 0.031228 1.9e-08 0.00 0.00 0.00 0:00:04.84

As you can see, Dehnen’s code is quite a lot faster. As for accuracy though, we leave this as an exercise for
the interested reader. Notice this code balances all forces and thus conserves total linear momentum unlike
the BH86 treecode.
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2.12 superbox

Fellhauer et al. (2000) wrote a particle-mesh code with high resolution sub-grids and an NGP (nearest grid
point) force-calculation scheme based on the second derivatives of the potential. It is also an example of
a code where initial conditions benefit from knowing the details of the potential calculation routines. In
particular, if the initial conditions are known to be representing a stable configuration (e.g. a Plummer
sphere). See the program Setup/plummer.f in the Superbox code distribution.

2.13 gadget

Springel (2000) made gadget publicly available. It is primarily a cosmology code, and based on the treecode,
but also incoorporates SPH particles and, for cosmological simulations, the Ewald sum technique to create
periodic boundary conditions. The code was originally written in Fortran, but in 2005 re-released and
completely rewritten in C. It runs in a parallelized mode under MPI, even if you have a single processor, you
will need the infrastructure to use MPI (e.g. mpich2 and openmpi) Also, gadget2 will typicall be compiled
for a specific physical situation. In the standard distribution you will find 4 different ones: cluster, galaxy,
gassphere and lcmd gas.

1% mkdir galaxy

2% ln -s $MANYBODY/gadget/Gadget2/Gadget2/parameterfiles

3% ln -s $MANYBODY/gadget/Gadget2/ICs

4% lamboot

5% mpirun -np 2 Gadget2.galaxy parameterfiles/galaxy.param

6% lamwipe

WARNING: this benchmark example (60,000 particles in a galaxy-galaxy collision) from the Gadget2 source
code takes a little over 2000 steps, and can easily take an hour on a single 3 GHz Pentium-4 class CPU.

To use a dataset from NEMO, the data will have to be transformed using the snapgadget and gadgetsnap

pair of programs:

mkdir galaxy

ln -s $MANYBODY/gadget/Gadget2/Gadget2/parameterfiles

ln -s $MANYBODY/gadget/Gadget2/ICs

mkplummer p10k 10000

snapgadget p10k galaxy.dat 10000,0,0,0,0

snap

lamboot

Gadget2.galaxy parameterfiles/galaxy.param

mpirun -np 2 Gadget2.galaxy parameterfiles/galaxy.param
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lamwipe

gadgetsnap ...

Note that in most circumstances you will want to check the units of mass, length and velocity with those
listed in the param file, as Gadget expects this.

The versions of Gadget that are pre-compiled are:

• Gadget2.cluster

• Gadget2.galaxy

• Gadget2.gassphere

• Gadget2.lcdm gas

2.14 quadcode

An example of an O(N) code where the potential and forces are derived from a potential expansion in
spherical harmonics (White 1983, who dubbed it multipole expansion). See also Hernquist & Barnes, (1990).
Fully integrated in NEMO, and very fast. Excellent to study the dynamics of an isolated galaxy, stability,
check orbit theory etc.

# File: examples/ex7

1% mkplummer p1024.in 1024 seed=1024

2% quadcode p1024.in p1024.out4 tstop=10

nbody freq eps_r eps_t mode tstop

1024 64.0000 0.0500 0.0700 3 10.00

tnow T+U T/U cputime

0.000 -0.247060 -0.4955 0.00

cm pos 0.0000 -0.0000 0.0000

cm vel 0.0000 -0.0000 -0.0000

...

tnow T+U T/U cputime

10.000 -0.247041 -0.4872 0.04

cm pos 0.0208 -0.0033 -0.0009

cm vel 0.0067 0.0007 -0.0004

particle data written
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# takes about 2.9" on my laptop

3% snapdiagplot p1024.out4

321 diagnostic frames read

Worst fractional energy loss dE/E = (E_t-E_0)/E_0 = -0.000674741 at T = 6.03125

4% snapmradii p1024.out4 | tabplot - 1 2:10 line=1,1

2.15 scfm

Hernquist & Ostriker (1992) deviced a code termed the self-consistent field (SCF) method, implemented as
scfm by Hernquist, with a NEMO wrapper program called runscfm.

# File: examples/ex8

2% runscfm ‘pwd‘/p1024.in p1024.out2 dtime=1.0/64.0 nsteps=640 noutbod=16

### Warning [runscfm]: Resolving partially matched keyword dt= into dtime=

snapprint /tmp/p1024.in m,x,y,z,vx,vy,vz header=t > SCFBI

m x y z vx vy vz

[reading 1024 bodies at time 0.000000]

[reading 1024 bodies at time 0.250000]

..

[reading 1024 bodies at time 9.750000]

[reading 1024 bodies at time 10.000000]

# a quick overview of the evolution

3% snapplot p1024.out2/scfm.dat nxy=4,4

# lagrangian radii, check how much the cluster remains in shape

4% snapmradii p1024.out2/scfm.dat log=t | tabplot - 1 2:10 line=1,1

This will have created a series of SNAPnnn files in the p1024.out2 directory, that have been converted to a
file scfm.dat in the run directory.

Note this program does not use dynamic memory, so the program needs to be recompiled for more than the
default number of particles (10,000 in the current code, see src/nbody/evolve/scfm/scf.h

2.16 CGS

The Collisionless Galactic Simulator (CGS) N-body code is a spherical harmonics Particle-Mesh code. The
current version is a largely expanded and improved version from van Albada by Trenti (Trenti 2005). A
convenient NEMO wrapper, called runCGS is available:
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# File: examples/ex9 :

1% runCGS in=p1024.in out=run2

>>> snapprint p1024.in x,y,z > run2/initPOS.dat

x y z

>>> snapprint p1024.in vx,vy,vz > run2/initVEL.dat

vx vy vz

line=1024

Using snapshot in=p1024.in with nbody=1024

>>> CGS.exe >& CGS.log

>>> tabtos fort.90 snap.out nbody,time skip,pos,vel,acc,phi; rm fort.90

[reading 1024 bodies at time 0.000000]

[reading 1024 bodies at time 0.100000]

...

[reading 1024 bodies at time 3.900000]

[reading 1024 bodies at time 4.000000]

# a quick overview of the evolution

2% snapplot run2/snap.out nxy=4,4

# lagrangian radii, but note masses were not present and had to be added

4% snapmass run2/snap.out - mass=1 | snapmradii - log=t | tabplot - 1 2:10 line=1,1

2.17 galaxy

Sellwood (1997) contributed this 3-dimensional cartesian code to NEMO. Is uses the Fourier Analysis/Cyclic
Redundancy (FACR) method, pioneered by Hockney (1965, 1970) and James (1977) for galactic dynamics.
Running the program itself has some of the usual fortran restrictions, and a NEMO frontend rungalaxy is
available to simplify running this code:

1% mkplummer p1024.in 1024

2% rungalaxy p1024.in run1

galaxy V1.3

Maximum number of particles (mbuff): 100000

Maximum gridsize: 33 33 33

Greens function creation complete

1024 8 8192 80000

305 particles outside the grid at the start

Run (re)started at time 0.

and will stop after the step at time 1.05000007

Time-centering velocities

Starting step 0

Starting step 1

...

Starting step 20

Un-centering velocities

Time=0

Time=0.5

Time=1

3% snapcenter run1/galaxy.snap . report=t

-0.000846 0.005885 -0.023592 0.003350 -0.004093 0.003552
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-0.006440 -0.002968 -0.026719 0.003096 -0.005531 0.000260

0.009361 -0.004989 -0.012464 0.013971 -0.005660 0.003792

2.17.1 AMUSE

Integrators in AMUSE are to be described here.

Table 2.2: Common keywords to N-body integrators differ
code time-step output-time-step diag-output stop-time start-time

firstn

nbody0

nbodyX (SJA) [eta] deltat - tcrit
fewbody

hnbody

kira

treecode v2.2 LH dtime nout - nsteps
treecode1 v1.4 JEB dtime dtout - tstop
gyrfalcON [hmin] step logstep tstop -
gadget

scfm dtime noutbod noutlog nsteps -
hackcode1 freq freqout minor freqout tstop
quadcode freq freqout minor freqout tstop
CGS dt,dtmin,dtmax freqout freqdiag tstop
galaxy dy dtout dtlog tstop
superbox

partree
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Figure 2.3: Code performances - On the horizontal axis log(N), vertically log(CPU-sec/particle/step). These
are the values for a P4/1.6GHz laptop. Seen in this plot are nbody0, galaxy, gyrfalcON, hackcode1 and xxx



26 CHAPTER 2. INTEGRATORS



Chapter 3

Code Testing

In the field of hydrodynamics rigorous testing using standard test cases is quite commonplace. However, in
the field of stellar dynamics this is not the case, largely due to the chaotic behavior of the N-body problem
(though most papers that introduce a new N-body code of course discuss their accuracy and performance).
Nonetheless, a number of efforts have been undertaken to compare codes, performance and accuracy. We
mention a few :

3.1 Lecar: 25-body problem - 1968

This is one of the oldest benchmark in N-body dynamics and also a very difficult one. 11 numerical inte-
grations of a particular 25-body problem were assembled and presented by Myron Lecar (1968). This was
essentially a cold collapse model, with all equal-mass particles initially at rest, and in fact the positions of
the 25th body was left as a (necessary) exercise for the reader! Data are available as $NEMODAT/iau25.dat,
though we cheated and added the 25th (as the last) body!

3.2 Pythagoran Problem

A really fun setup which has been used in a number of studies (Burrau in 1913 was the first to report on
this, but unlike the real outcome conjectured it would be a periodic solution of the 3-body problem) is 3
particles on a Pythagoran Triangle with sides 3-4-5 and relative masses 3:4:5 (Szebehely & Peters, 1967).
See Section G.1 for more details and the coverpage for a sample integration.

27
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3.3 Aarseth, Henon & Wielen - 1974

Aarseth, Henon & Wielen (1974) compared the dynamical evolution of a Plummer sphere as integrated with
an N-body integrator, the Monte Carlo method and the fluid dynamical approach. This paper is also well
known for its recipe how to create an N-body realization of a Plummer sphere. You can find examples of
this in quite a few places, e.g.
$NEMO/src/nbod4/init/mkplummer.c

$STARLAB/src/node/dyn/init/makeplummer.C

$NEMO/src/nbody/evolve/aarseth/nbody1/source/data.f

$NEMO/usr/aarseth/firstn/data.f $NEMO/usr/Superbox/Setup/plummer.f

cf. long term comparisons Makino et al. did on gravothermal oscillations with Grape

3.4 Kang et al. - Cosmological Hydrodynamics - 1994

Kang et al. compared the simulation results of five of cosmological hydrodynamic codes from z = 20 to
z = 0. 5 codes were used: three Eulerian mesh, and two variants of the Lagrangian SPH method. Codes:
TVD (Ryue et al 1993), PPM (Bryan et al 1993), COJ (Cen 1992), TSPH (Hernquist & Katz, 1989), PSPH
(Evrard 1988).

3.5 Frenk et al. - 1999

Frenk et al. took 12 cosmological codes and compared the formation of a rich cluster of galaxies. Again
using a number of SPH and Eulerian (various styles) grid simulations were used. These simulations became

known as the ‘‘Santa Barbara Cluster’’ benchmark.

3.6 Heitmann et al. - 2005

Comparing cosmological N-body simulations. Codes: MC2 (Habib et al 2004), FLASH (Fryxell et al 2000),
HOT (Warren & Salmon 1993) GADGET (Springel et al 2001), HYDRA (Couchman et al 1995), TPM (Xu
1995, Bode et al 2000).

Apart from the Frenk et al. Santa Barbara cluster comparison, they also compared two other simulations:

The initial conditions, as well as some results at z=0, are available on their website 1.

Power et al - 2003 - on errors.

1http://t8web.lanl.gov/people/heitmann/arxiv/
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3.7 Hozumi & Hernquist - 1995

Testing SCF method on either homogenous spheres or Plummer models, with given initial virial ratio. This
also includes the cold collapse. In particular, they studied the resulting shapes.

3.8 Sellwood: Galaxy Dynamics - 1997

Sellwood (1997), in Galaxy Dynamics by N-body Simulation, compared 5 different codes and argued that
certain codes... Comparing direct N-body, tree and grid codes. Plummer sphere. do what? stability?

3.9 Heggie: Kyoto I - 1997

This starcluster benchmark was organized by Heggie, and presented at the IAU GA in Kyoto in August
1997. 10 results have been compiled.

3.10 Heggie: Kyoto II - 2001

This followup starcluster benchmark was presented at IAU Symposium 208 (Tokyo) on 11 July, 2001. 13
results have been compiled to this moment.

3.11 Notes

Also:

- optimal smoothing papers

Merritt

Sellwood

Dehnen

Zhan astro-ph/0507237

Athanassoula?

- error stuff

Power at al 2003

- relaxation:
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Hernquist & Barnes (1990) :

Are some N-body algorithms intrinsically less collisional than others?

- forwards and backwards integration.

van Albada & van Gorkom - (1977)

- various collisional codes compared: MC, nbody6, kira, grid codes etc.

under various circumstances: See some SPZ papers by:

Takahashi et al. (2002)

Spinnato et al. (2003)

Joshi et al. (2000)

Portegies Zwart et al. (2004)

Gualandris et al. (2004)

- NAM = Numerical Action Method. We’ll have code from Shaya. Find solution

with NAM and integrate it back using e.g. Aarseth and see where they

come out.

e.g. http://arxiv.org/abs/astro-ph/0512405
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Data Conversion

With this large number of integrators it is unavoidable that dataformats will be different here. We list a
few related to the beforementioned integrations. Note that if your format is not listed here, one of these is
usually close enough to be modified to work quickly.

Table 4.1: N-body data interchange programs in NEMO
format origin to-NEMO from-NEMO comments

snapshot NEMO - -
zeno ZENO zenosnap - csf may also work
dyn starlab dtos stod
tdyn starlab - - use
‘‘205’’ treecode atos,atos sph stoa, stoa sph Hernquist
tipsy tipsy tipsysnap snaptipsy be aware of ascii/binary
gadget gadget gadgetsnap snapgadget
u3 nbody1,2 u3tos - be aware of endianism
martel martelsnap - Martel
heller hellersnap - Heller/Shlosman
rv rvsnap snaprv Carlberg
rvc rvcsnap Couchman
xvp xvpsnap Quinn/Balcells
ascii-tables - tabtos snapprint versatile converter
idl - - snapidl binary IDL format
3dv - - snapidl for a variety of 3D viewers
xyz NEMO - snapxyz for xyzview
specks partiview - snapspecks for partiview
... partree - - -
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4.1 Examples

Some examples will follow here... See also the next chapter for some examples.



Chapter 5

Projects

5.1 Units

We need a short session on units. See also NEMO’s units(5NEMO) manual page. Not just the Heggie &
Matthieu (1986) virial units, but also how to scale them to real objects, like clusters and galaxies. Discuss
stellar evolution in kira and how this has introduced a hybrid simulation where the scale cannot be changed!

Aarseth uses N-body Units, i.e.

AMUSE attaches units to numbers, e.g. m = 100.0 | units.MSun, r = 1 | units.parsec.

5.2 Initial Conditions

Although some initial conditions can be generated from basic principles, others need the integrator for force
calculations to place the initial conditions in a specific state consistent with the chosen integrator that uses
that force. The position of the 25th body in the IAU 25-body problem is a simple example of where an
on-the-fly calculation is needed to guarentee the center of mass is numerically at (0,0,0).

Also important is the issue of quiet starts, as extensively discussed by Sellwood (1987, 1997). Suppression
of shot noise. See also the new wavelet based code by Romeo et al. 2003, where the equivalent of a factor
of 100 speedup is claimed.

White (1996) suggested a novel way to initialize cosmological simulations, referred to as “glass” initial
conditions. They can be obtained when a Poisson sample in an expanding periodic box is evolved with the
sign of gravity reversed until residual forces have dropped to a negligible value. Gadget-2 supports this as
an option.
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5.3 Relaxation

Can we do some interesting experiments in 2D where τrelax ≈ τcrossing?

Also, for a Plummer sphere: show that 2T/W != 1, and that Clausius must be used to study the equilibrium
of the system. How much does it ’relax’ for given softening? Does it depend on N ?

5.4 Plummer Sphere

Explain sampling a DF, use rejection technique, and using the code show how to make a Plummer sphere.
See Aarseth, Henon & Wielen (1974).

5.5 Galaxy Collisions

Where is the dark matter in the S+S remnants sometimes called Ellipticals? (cf. Baes’ papers about dark
matter in E’s). How does the shape of tidal tails depend on the extent of the dark matter.

Also, this is an ideal scenario to study systematic effects of errors in the treecode before and after the overlap.
Check conservation of energy and properties of the resulting object(s).

5.6 Galactic Discs

- Galactic Disks:

- mkexpdisk/mkexphot -

old NEMO program, nice as toy, but no halo or bulge

can try and slowly/adiabatically add one. show how bad it is

- galmake: Hernquist 1993 - has some pitfalls. slow. bad for large N

- mkkd95: Kuijken & Dubinski

- MaGalie (Boily et al 2001)

- Dehnen’s ‘‘Galpot’’

Simulations:

- bar formation - properties, dependance on ICs, random, Q4

- heating of the disk

- interactions:

- M31/MW

- M51

- Antenna

Subsampling: how to generate good initial conditions?
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5.7 Cold Collapse

Cold Collapse (cf. v Albada 1981, McGlynn?, but also Lecar’s 25-body problem). Discussed in many papers,
e.g. Hozumi & Hernquist , Aarseth, Popaloizou, Lin; Bertin & Stiavelli; Boily; Theis. Effects of softening
on shape.

Cold collapse calculations can be done from any spherical particle distribution by setting the velocities to 0.
snapscale vscale=0.0, or snapvirial can be used to scale to a preferred ratio of |2T/W |. Programs like
mkhomsph have a direct parameter that controls the initial virial ratio, so no external scaling is needed.

Figure 5.1: Positions of an N=1000 cold collapse at T=0, 1.5 (roughly the first collapse), 4.0 and 10.0 in an
XY projection (left) and an XZ projection (right). - try also snapplot3

1% mkhomsph s1 1000 rmin=0 rmax=1.2 2t/w=0

2% gyrfalcON s1 s1.out tstop=10 step=0.05 give=m,x,v,p

3% snapplot s1.out times=0,1.5,4,10 nxy=2,2 nxticks=3 nyticks=3 yvar=y yapp=s1xy.ps/vps

4% snapplot s1.out times=0,1.5,4,10 nxy=2,2 nxticks=3 nyticks=3 yvar=z yapp=s1xz.ps/vps

As can be seen in the two projections in Figure 5.1, the density center of the collapsed object does not remain
at the origin, despite that a perfect momentum-conserving integrator has been used. Why is that?

To study the structure of the resulting object, we will translate the center of mass to the density center.
Since we have instructed the integrator to also store the potential (already available to the code during the
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integration) in the output data stream, which can now be used to weigh the particles in snapcenter with
an appropriate factor (why Φ3 and not Φ2 or Φ?). See also Cruz et al. (2002).

snapmradii s1.out 0.01,0.1:0.9:0.1,0.99 > s1a.mtab

snapcenter s1.out - "-phi*phi*phi" | snapmradii - 0.01,0.1:0.9:0.1,0.99 > s1b.mtab

snapmradii s1.out 0.01,0.1:0.9:0.1,0.99 log=t > s1a.mtab

snapcenter s1.out - "-phi*phi*phi" | snapmradii - 0.01,0.1:0.9:0.1,0.99 log=t > s1b.mtab

tabplot s1a.mtab 1 2:12 0 10 -2 2 nxticks=9 line=1,1 color=2,3,3,3,3,2,3,3,3,3,2

tabplot s1b.mtab 1 2:12 0 10 -2 2 nxticks=9 line=1,1 color=2,3,3,3,3,2,3,3,3,3,2

xlab=Time "ylab=log(M(r))"

1000: 10?

4000: 37"

16000: 163"

an interesting observation of this kind of cold collapse is that

theoretically (N -> \infty) the density would rise arbitrarely high

at the collapse (the ‘‘big crunch’’), thus at some point the

assumption of a collisionless simulation are violated.

Not to mention that softening is then not treated correctly,

since in general Nbody simulations with softening do not take

the overlap potential into account.

test this by using a known 2body problem;

check with the work of Aladin in the 70s or 80s ?

5.8 Models for a galactic disk

Kuijken & Dubinksi (1995) came up with a novel way to make reasonably self-consistent disk-bulge-halo
models. You can find their code in $NEMO/usr/kuijken/GalactICS-exp, the binaries have been placed in
$NEMOBIN, as well as a wrapper program mkkd95 is available to simplify creating such galaxies in the NEMO
style. In addition, mkkd95 is optimized to create multiple random realizations.

GalactICS/Milky_Way/A>

make galaxy # mergerv disk bulge halo > galaxy

this will take a while to compute

D B H

A 8000 4000 6000 13sec

B 1000 1000 1000 48sec

C 4000 2000 10000 48sec

D 1000 1000 1000 98sec
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Figure 5.2: Two Lagrangian Radii calculations: one without centering the snapshot (left), and one with
(right). Notice that the vertical axis is logarithmic. The mass-radii are plotted at 1,10,20,....90,99% of the
mass. Note that between 20% and 30% of the mass is lost in this simulation.

tabtos galaxy A0.snap nbody,time m,pos,vel

These are DBH (Disk-Bulge-Halo, in that order in a snapshot) models

snapmstat A0.dat sort=f

0 0:7999 = 8000 Mass= 0.000108822 TotMas= 0.87058 CumMas= 0.87058

1 8000:11999 = 4000 Mass= 0.00010631 TotMas= 0.425242 CumMas= 1.29582

2 12000:17999 = 6000 Mass= 0.000819365 TotMas= 4.91619 CumMas= 6.21201

0=disk 8000

1=bulge 4000

2=halo 6000

snapxyz A0.dat - | xyzview - nfast=18000 maxpoint=18000 scale=16

snapplot A0.dat color=’i<8000?2.0/16.0:(i<12000?3.0/16.0:4.0/16.0)’

colors in yapp are 0..1 and since we use PGPLOT, we only have

16 colors. 0/16=b 1/16=white 2=red 3=green 4=blue

e.g. to see the colors

snapplot A0.dat color=x

snapxyz A0.dat -

snapxyz A0.dat - color=’i<8000?1:(i<12000?2:4)’ | xyzview - maxpoint=18000 nfast=18000 scale=8 fullscreen=t
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snapprint A0.dat x | tabhist -

minmax about 5

snapprint A0.dat vx | tabhist -

minmax about 1

thus T=2.pi.R/v = 6*5/1=30 !!!

thus freqout=1/30 for an orbit

thus freq=1/1500

gyrfalcon: 2^hmin = 1500 :: hmin=10..11 !!

gyrfalcON A0.dat A1.dat tstop=1/30 step=1/300 hmin=10

0 -2.47565 0.49177 1.2903 7.2e-09 0.02 0.25 0.27 0.27

0.00097656 -2.475653 0.49177 1.2903 7.4e-09 0.01 0.28 0.29 0.57

0.0019531 -2.475656 0.49177 1.2903 7.4e-09 0.03 0.25 0.28 0.85

....

0.033203 -2.475671 0.4919 1.2903 5.1e-09 0.02 0.26 0.28 9.93

0.03418 -2.475674 0.4919 1.2903 4.9e-09 0.02 0.26 0.28 10.21

snapdiagplot A1.dat

11 diagnostic frames read

### Warning [snapdiagplot]: Autoscaling time. MinMax=-0.00170898 0.0358887

Worst fractional energy loss dE/E = (E_t-E_0)/E_0 = 9.63054e-06 at T = 0.0341797

time gyrfalcON A0.dat . tstop=1 step=1/30 hmin=10

0 -2.47565 0.49177 1.2903 7.2e-09 0.02 0.26 0.28 0.28

0.00097656 -2.475653 0.49177 1.2903 7.4e-09 0.03 0.25 0.28 0.58

...

0.99902 -2.475605 0.49946 1.2903 1.5e-08 0.02 0.27 0.29 298.529

1 -2.475602 0.49945 1.2903 1.5e-08 0.02 0.25 0.28 298.809

290.800u 8.070s 6:53.62 72.2% 0+0k 0+0io 376pf+0w

snapdiagplot A1.dat

31 diagnostic frames read

### Warning [snapdiagplot]: Autoscaling time. MinMax=-0.05 1.05

Worst fractional energy loss dE/E = (E_t-E_0)/E_0 = 7.54072e-05 at T = 0.5

---

gyrfalcON A0.dat A2.dat tstop=1 step=1/100 hmin=9

0 -2.47565 0.49177 1.2903 7.2e-09 0.02 0.25 0.27 0.27

0.0019531 -2.475656 0.49177 1.2903 7.1e-09 0.02 0.21 0.23 0.51
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snapdiagplot A2.dat

101 diagnostic frames read

### Warning [snapdiagplot]: Autoscaling time. MinMax=-0.05 1.05

Worst fractional energy loss dE/E = (E_t-E_0)/E_0 = 8.70601e-05 at T = 0.521484

gyrfalcON A0.dat A3.dat tstop=10 step=1/10 hmin=8

0 -2.47565 0.49177 1.2903 7.2e-09 0.02 0.26 0.28 0.28

0.0039062 -2.475652 0.49177 1.2903 7.4e-09 0.02 0.25 0.28 0.56

...

9.9961 -2.475596 0.49744 1.2903 1.9e-08 0.02 0.26 0.28 744.695

10 -2.475598 0.49744 1.2903 1.8e-08 0.02 0.26 0.28 744.975

725.720u 19.340s 17:38.84 70.3% 0+0k 0+0io 376pf+0w

snapdiagplot A3.dat

101 diagnostic frames read

Worst fractional energy loss dE/E = (E_t-E_0)/E_0 = 8.21485e-05 at T = 0.5

5.8.1 Potential

time mkkd95 junk1 40000 80000 60000 125\"

gyrfalcON junk1 junk1.pot give=m,x,v,p tstop=0 3.5\"

foreach n (32 64 128 256 512 1024)

snapgrid junk1.pot junk1-$n.ccd xrange=-10:10 yrange=-10:10 yvar=z zvar=t zrange=-0.1:0.1

mean=t evar=phi nx=$n ny=$n

end

5.9 Detonating Galaxies: testing the treecode

mkplummer pp.in 15000

mkplummer ps.in 4000

snapscale ps.in ps1.in mscale=0.2 rscale=0.2

hackforce ps1.in ps2.in

snapvirial ps2.in ps3.in rscale=f virial=1

gyrfalcON ps3.in ps3.out tstop=10 step=0.2

snapmradii ps3.out | tabplot - 1 2:10

snapshift pp.in pp1.in 0.3,0.3,0.3

snapshift ps3.in ps4.in 7,7,7 -0.25,-0.25,-0.25

snapadd pp1.in,ps4.in detonate.in



40 CHAPTER 5. PROJECTS

5.10 Accuracy of a code

Use the van Albada and van Gorkum technique to integrate a code forwards, storing many snapshots. For
each snapshot you then integrate backwards to t=0 (some code allow dt < 0, others needs to be rescaled
v = -v) and comparing the two snapshots with snapcmp. Plot the results as function of T. What kind of
bahavior do we see? Liapunov? Which codes are “good”, which are bad, and can we understand this?

5.11 Collisionless?

Athanassoula - papers on importance of resonances, live bars. What is a good N to do galactic dynamics.
Martin Weinberg now claims 107 − 108. Also check the approach Romeo et al. (2003) took using wavelets.

5.12 Comparing

Take two Nbody codes and compare their potential. For example, use Sellwood’s galaxy PM/FFT code
and Dehnen’s gyrfalcON TreeCode and Trenti’s (GCS) SFP expansion code, and compare the potential for
a homogenous sphere of different degrees of flattening. Another interesting parametrization is that of two
spheres at different separations (collisions of galaxies). See also Figure 2.2.
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Visualization

Some brief but wise words about packages we all have some experience with. Obviously its a big ugly world
out there, and there is a lot more under the sun than this.

6.1 NEMO

6.1.1 snap3dv

The snap3dv program in NEMO converts data to a variety of popular 3D viewers, but in addition special
converters are available for partiview (snapspecks) and xyzview (snapxyz). Even simple programs like
snapprint can work very effectively.

6.1.2 xyzview

Comes with NEMO, needs the VOGL (Very Ordinary GL) library, which emulates GL on classic X with no
acceleration. Can only plot colored dots, no finite size points. Poor for presentations. (manual) animations,
can also show the orbit for one selected star from the simulation.

# standard model-A from Kuijken&Dubinski with 8000,4000,6000 in disk-bulge-halo

1% mkkd95 a0.dat

# display them in Red/Green/Blue using snapplot

2% snapplot a0.dat color=’i<8000?2.0/16.0:(i<12000?3.0/16.0:4.0/16.0)’ yvar=z xrange=-8:8 yrange=-8:8

# display them in Red/Green/Blue using xyzview

3% snapxyz a0.dat - color=’i<8000?1:(i<12000?2:4)’ | xyzview - maxpoint=18000 nfast=18000 scale=8

need an orbit example here as well
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6.1.3 glnemo2

A recent addition from the Marseille group, glnemo is a versatile interactive 3D viewer that can also dis-
play SPH/gas particles. Examples dataset are in $NEMO/src/nbody/glnemo/snapshot. Recent updates to
glnemo included making animations. A completely rewritten version, glnemo2 is now the default version,
and the previous version is deprecated.

6.2 Starlab

6.2.1 xstarplot

Starlab’s visualization program is called xstarplot. More to say on this.

# create a plummer

1% makeplummer ...

# integrate it

2% kira ...

# display it

3% xstarplot ....

6.3 partiview

An NCSA product. Excellent interactive capabilities. Uses GL. A special format, dubbed tdyn, can be
produced by kira in order for partiview to seamlessly zoom in space and time. NEMO has a conversion
program snapspecks.

6.4 tipsy

This is a neat X based application. Might have problems with non-8 bit display.1

1% startx -- :1 -depth 8

2% cd $MANYBODY/tipsy/

3% tipsy

> openascii run99.ascii

> readascii run99.bin

read time 14.970800

1See comments in $NEMO/src/nbody/evolve/aarseth/triple/README.pjt
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> loadb 14

used time 14.970800, hope you don’t mind master

> xall

> quit

6.5 Tioga

Written in ruby, in active development. Good quality PDF output, animations are also possible.

6.6 glstarview

Comes with Fregeau’s code. Data from the integration can be directly piped (or tee’d) into this program for
visualization. Notice that xstarplot in starlab can also do this.

1% binbin -D 1 | glstarview

6.7 starsplatter

StarSplatter is a tool for creating images and animations from astrophysical particle simulation data. It
treats each particle as a Gaussian ”blob”, with an exponential fall-off similar to the SPH smoothing length
or gravitational softening length common in astrophysics simulations. It also properly anti-aliases points, so
even if the particles are very small the results may look better than one would get by simply binning particle
counts to produce an intensity image.

See http://www.psc.edu/Packages/StarSplatter Home/

You can also find tools there to help you set up a scene, choose a pan and zoom around.

6.8 gravit

This program has recently been developed, and has various neat visualizaton options and animates simula-
tions. It also displays the oct-tree of the underlying Barnes & Hut treecode. There are plans to integrate
this with some of the existing codes.

http://gravit.slowchop.com/
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6.9 povray and blender

Great to create photo-realistic images. Slightly steep learning curve, but excellents books available. And
blender. For an example, see http://www.bottlenose.demon.co.uk/galactic/index.htm.

http://www.povray.org/ http://www.blender.org/

6.10 spiegel

As part of the gravitySimulator project at RIT, visualization software using Java and Java3D is being
developed.

http://www.cs.rit.edu/~grapecluster/

6.11 visit

http://www.llnl.gov/visit/

6.12 ifrit

http://home.fnal.gov/ gnedin/IFRIT/ uses VTK and QT and is written in C++. It is a powerful tool
that can be used to visualize 3-d data sets.

6.13 xnbody

an online visualization tool for nbody6++, written by Sonja Habbinga for her diploma thesis at the Research
Centre Juelich in Juelich, Germany. http://www.fz-juelich.de/jsc/JSCPeople/habbinga

6.14 OpenDX

Open source visualization package, written by IBM. See http://www.opendx.org/. Can be quite memory
intensive, but has excellent tools for particle as well as grid data.
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6.15 AstroMD / VisiVO

cosmolab distributes an open-source vizualization package called AstroMD. Uses the Visualization Tool Kit
“vtk” (see http://public.kitware.com/VTK/).

6.16 xgobi, ggobi

Great for multi-variate analysis after you have accumulated hundreds or thousands of simulations. There is
also a limited version of this kind of dynamic query technique available in NEMO’s program tabzoom, which
uses pgplot for visualization and a simple command line interface for interactions.

6.17 python

Excellent language, now very popular. Graphics interface matplotlib, or alternatively qwt.

6.18 R

Although R is a statistics package, it has a very nice integrated way for visualization, and allows extending
the package by using your own compiled code. It could potentially be useful for our type of analysis. URL:
http://cran.us.r-project.org/

6.19 IDL

Although this program is not freely available, many people have written display and analysis routines for IDL
that are freely available. Gadget comes with some routines. See also NEMO’s inefficient snapidl routine to
export data for IDL. The Berkeley group (Marc Davis) has some routines on their website and some of your
instructors admitted having used it (but they never inhaled).

A public version, GDL, is available which is largely IDL V6 compatible, and uses gnuplot are the graphics
engine.

6.20 ImageMagic

You always need image conversion programs. ImageMagic is one of the better packages for this. Much like
NEMO and Starlab, ImageMagic is a collection of image manipulation programs (e.g. convert, montage,
mogrify). Reads and writes just about any image format, including some flavors of FITS. Most linux
distributions make this package directly available.
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6.21 Movies

Animations are still the most popular way to convey your results in a presentation. Good tools exist, but
the intrusion of closed sourced formats (or CODECs within a particular format) has scattered the field.

mpeg, animated gif, avi, mpg2avi ....

http://bmrc.berkeley.edu/frame/research/mpeg/mpeg2faq.html

http://www.bergen.org/AAST/ComputerAnimation/Help_FAQs.html

http://the-labs.com/GIFMerge/

$NEMO/csh/mkmpeg_movie : some example scripts to make movies
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Exercises

1. Find out what time step criterion the first N-body code (von Hoerner) was using. How do nbody0 and
this program (firstn) scale in their performance if you want to reach the same accuracy?

2. The output of the example firstn output listed earlier (examples/ex1), can depend on the compiler,
and its flags. For example the Q=0.55 with 3624 steps can also become Q=0.65 with 3569 steps! Can
you understand this. Is this worrysome?

3. What are these peculiar “time resets” quoted in one of the nbody0 examples.

4. Why was the location of the 25th particle not given in the IAU 25-body problem (Lecar 1968)?

5. Take hackcode1, There are two ways to get more accurate results: add a quadrupole term (as im-
plemented in hackcode1 qp) or decrease the critical opening angle (tol=). Device an experiment to
show which of the two is the less compute intensive. Does it depend on the number of particles or the
configuration?

6. Back to kindergarden: connect the dots in Figure 2.3 and label which codes they are.

7. Take an original integrator, one without a NEMO interface, and write a user friendly shell script (sh,
csh, python, perl, ...) that can take a NEMO snapshot input, and produces a NEMO snapshot output
file, for given timestep dt, output timetep dt out and a final integration time of tstop.

8. What is better if you want to find the center of a snapshot. Using small N and doing a lot of (K)
experiments, or

9. For a given configuration (for example a Plummer sphere), define a statistical measure for the accurary
of the treecode as a function of the critical opening angle, and compare the classical BH treecode
O(NlogN) with and without quadrupole corrections to that of the O(N) Dehnen treecode.

10. Follow up on the previous exercise and add Gadget2 in the comparison.

11. Use CVS (see Appendix C) and study the performance of gyrfalcON on the following dates: now,
1-jul-2006, ..
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12. Try out the galaxy screensaver in Linux, study their code and generate initial conditions for NEMO
integrators. How realistic are they? Compare Toomre & Toomre’s (1972) classic work.

13. Study the Holmberg (1941) galactic disk, in particular the stability properties.
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Appendix A

Setting Up Your Account

A.1 Leiden 2010 setup

We will be using Linux workstations, running Suse 10.1 (x86-64) with dual 64bit Intel 3 GHz CPU processors
(totaling 150 GHz!). Each workstation comes with 1 GB memory. Bla bla.

GH06: A common data directory /soft/gh06 is available on all 25 linux lab workstations. These machines
are named c01tgh, c02tgh ... c24tgh and the server is called ctgh06. Each student has been assigned an
account stud01, stud02, ... stud50, the initial passwords are written on the white-board, but please change
them. Also note that depending on your studXX account, you will need to be on one of the specific cYYtgh

machines. There is a simple algorithm between XX and YY. See also the whiteboard.

Printing should be done via the HP LaserJet 4050 in the lab. For those connecting their laptops, use the
“Networked JerDirect” queue type, with printer at 192.168.100.176 on port number 91001

Here it is assumed that you are using the C-shell (csh or tcsh) or Bourne Shell (bash). Easiest is to add
the following command to your .cshrc file for csh

source /soft/gh06/manybody/manybody_start.csh

or .bashrc for bash users

source /soft/gh06/manybody/manybody_start.sh

This will add the NEMO and STARLAB packages to your environment, as well as a number of other tools.
It will also give you access to a modest amount of source code that has not been compiled, and a number
of papers drawn from ADS and astro-ph and placed in $MANYBODY/papers. If you want to install/copy this
onto your laptop or home machine, please see Appendix B.

1in CUPS this shows up asDeviceURI socket://192.168.100.176:9100
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A.2 A quick test

To verify the installation was done correct, here are some quick one liners, without much of an explanation.
Some of them will bring up a picture. Most commands, except where noted, take a few seconds. If you
prefer, you can also execute the quick test script in the $MANYBODY root directory.

1. firefox $MANYBODY/index.html : local HTML

2. mkplummer p1 1000 : NEMO, create a Plummer sphere

3. snapplot p1 color=x : NEMO, check if pgplot works. check color bands

4. gyrfalcON p1 . tstop=0.1 : NEMO, check if an integrator works

5. mkkd95 a0.dat: NEMO: create composite galaxy (takes 45 secs on a P1.6GHz)

6. snapplot a0.dat color=’i<8000?2.0/16.0:(i<12000?3.0/16.0:4.0/16.0)’ yvar=z xrange=-8:8

yrange=-8:8 : NEMO: parse bodytrans functions?

7. snapxyz a0.dat - color=’i<8000?1:(i<12000?2:4)’ | xyzview - maxpoint=18000 nfast=18000

scale=8 fullscreen=t : NEMO 3D viewer? Hold down key ’1’, ’2’ or ’2’ and move the mouse. Hit
ESC to quit.

8. glnemo a0.dat select=0:7999,8000:11999,12000:17999 : NEMO 3D viewer. Press left mouse to
view the object from different angles, use the scroll mouse (if you have one) to zoom in and out.

9. snapgrid a0.dat - xrange=-8:8 yrange=-8:8 nx=128 ny=128 yvar=z | ccdsmooth - - 0.1 | ccdfits

- a0.fits : NEMO make a CCD type observation of dark matter

ds9 a0.fits : vizualize it. right mouse down changes contrast. Try zooming in and changing color
map to SLS.

10. nemobench gadget : a small Gadget2 benchmark (TBA)

11. makeplummer -n 32 > p32.dyn : Starlab : create a Plummer sphere

12. makeplummer -n 10 | dtos - | snapprint - : a Starlab-NEMO pipe and converting data

13. makeplummer -n 32 | kira -D 0.1 -t 2 | xstarplot : Starlab w/ graphics. ’q’ to quit.

14. make -f $MANYBODY/partiview/data/primbin16.mk : Starlab: 16 body integrator. Takes about 15
secs.

15. partiview $MANYBODY/partiview/data/primbin16.cf : Partiview: view animation. Resize window.
Left mouse down rotates. Right mouse down zooms. >> button starts movie.

16. binsingle -D 1 | glstarview : fewbody + visualizer

17. g++ -o forward euler1 $MANYBODY/acs1/chap3/forward euler1.C; forward euler1 (ACS 1)

18. ...ruby... (ACS 2)
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A.3 Available packages and commands

NEMO package with 200+ tools

Starlab package with 200+ tools

partiview 4D (space+time) data viewer

ds9 a FITS image display program

fewbody programs that come with Fregeau’s ‘‘fewbody’’

nbody6 Aarseth’s nbody6 integrator

gadget2 SPH-treecode for cosmology
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Appendix B

manybody: N-body Compute Toolbox

B.1 Linux Cluster

The directory /soft/gh06 on the 25 Linux Lab machines contains all the manybody software (and then
some) we are discussing at this school. We have also made a DVD available, from which you should be able
to reproduce this toolbox on your own laptop or workstation at home. Some details on the installation of
this are described in the next sections.

First an overview of the manybody hierarchy under /soft/gh06:

manybody/ root directory

opt/ contains a {bin,lib,include,...} tree for a private --prefix

acs/ kali code

nemo_cvs/ NEMO package

starlab_cvs/ Starlab package

partiview_cvs/ partiview visualization

starcluster_cvs/ starlab interface to web based programs

fftw-2.1.5/ fftw library

papers/ ADS and astro-ph papers (PDF and PS mostly)

manybody_pkg/ (mostly) tar balls of codes

B.2 The DVD

In the root directory of your DVD you will find the following files and directories:

README a small intro

install_fc5 shell script that should install binary "manybody"

index.html top level index to all HTML in this tree
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quick_test shell script to test MANYBODY (see Appendix A.2)

manybody_fc5.tar.gz FC5 binaries of manybody, without the papers

papers.tar.gz astro-ph and ADS paper for the manybody material

manybody_pkg/ directory with all sources in case of re-install

B.3 Installation

If your linux system is not Fedora Core 5 or compatible, recompilation may be needed, since its shared
library requests may be conflicting with the ones your system has. The script install manybody should
guide you through this. You can find a copy of this in either the manybody directory, or its original CVS
location, $NEMO/usr/manybody.

1% tar zxf /mnt/cdrom/manybody_fc5.tar.gz

2% source manybody/manybody_start.csh

3% tar zxf -C manybody /mnt/cdrom/papers.tar.gz

if you need to do a source install, the following should be your starting point1

11% /mnt/cdrom/install_manybody pkg=/mnt/cdrom/manybody_pkg

12% source manybody/manybody_start.csh

but more than likely some tweaking is needed if you have missing or incompatible libraries or tools.

4% setenv CC gcc-32

5% setenv CXX g++-32

6% setenv F77 g77

7% /mnt/cdrom/install_manybody pkg=/mnt/cdrom/manybody_pkg

A typical install takes about an hour.

B.4 Importing new Packages into manybody

Much of the available open source software we use, use autotools to configure, make and install their
software on the users system. Where exactly this software is going to be located, is free to the user to decide.
On most Unix-based system the /usr, /usr/local, /opt/local e.g. DarwinTools on MacOSX or /sw (e.g.
Fink on MacOSX) are used for this. As long as the user then puts the respective ’’bin’’ directory in their
search path, and perhaps the respective ’’lib’’ directory in their shared library search path, all is well.

1the root name /mnt/cdrom may very well be different on your machine
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The drawback of this approach is that the user needs have administrative privilages (username root in Unix
parlor). For manybody we cannot always assume that, so we choose a similar approach whereby libraries,
programs and their ancillary material are placed in a directory under user control.

So, for almost all such packages we can use these kinds of commands:

1% tar zxf /tmp/package-X.Y.Z.tar.gz

2% cd package-X.Y.Z

3% ./configure --prefix=$MANYBODY/opt

4% make

5% make install

and for packages that depend on other packages, we would use something like

3% ./configure --prefix=$MANYBODY/opt --with-fltk=$MANYBODY/opt

B.5 Example install session

% install_manybody

install_manybody : version ...

Wed Jul 5 14:56:00 EDT 2006 Using pkg=/scratch11/teuben/manybody_pkg

Wed Jul 5 14:56:01 EDT 2006 Installing cvsutils

Wed Jul 5 14:56:02 EDT 2006 Installing ruby

Wed Jul 5 14:57:18 EDT 2006 Installing acs

Wed Jul 5 14:57:22 EDT 2006 Installing starlab

Starlab version 4.4.2 loaded with

STARLAB_PATH = /scratch11/teuben/manybody/starlab_cvs

STARLAB_INSTALL_PATH = /scratch11/teuben/manybody/starlab_cvs/usr

STARLAB-COUNT: 176

Wed Jul 5 15:05:09 EDT 2006 Installing starcluster

ERRORS compiling starcluster, check /scratch11/teuben/manybody/tmp/starcluster.log

ERRORS installing starcluster, check /scratch11/teuben/manybody/tmp/starcluster.log

STARLAB+CLUSTER-COUNT: 176

Wed Jul 5 15:05:09 EDT 2006 Installing fltk

Wed Jul 5 15:06:03 EDT 2006 Installing partiview

ERRORS compiling partiview, check /scratch11/teuben/manybody/tmp/partiview.log

cp: cannot stat ‘partiview’: No such file or directory

Wed Jul 5 15:06:25 EDT 2006 Installing NEMO

NEMO-COUNT: 209

Wed Jul 5 15:10:51 EDT 2006 Installing gadget

Wed Jul 5 15:29:07 EDT 2006 Installing firstn

Wed Jul 5 15:29:08 EDT 2006 Installing nbody6

Wed Jul 5 15:29:29 EDT 2006 Installing galactICS

Wed Jul 5 15:29:34 EDT 2006 Installing gsl

Wed Jul 5 15:33:44 EDT 2006 Installing fewbody,glstarview

ERRORS compiling glstarview, check /scratch11/teuben/manybody/tmp/fewbody.log

cp: cannot stat ‘glstarview’: No such file or directory

Wed Jul 5 15:33:47 EDT 2006 Installing hnbody- for linux only
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Wed Jul 5 15:33:47 EDT 2006 Installing ds9 - for linux only

Wed Jul 5 15:33:47 EDT 2006 Installing xyz from NEMO

Wed Jul 5 15:33:55 EDT 2006 Installing EZ

ERROR: no known fortran compiler for EZ available (ifort, f95 g95)

Wed Jul 5 15:33:56 EDT 2006 Installing Tioga

Wed Jul 5 15:34:04 EDT 2006 Installing MMAS

Wed Jul 5 15:34:04 EDT 2006 Installing FFTW

Wed Jul 5 15:34:48 EDT 2006 Instaling StarCrash

Wed Jul 5 15:34:53 EDT 2006 Done.

In this particular example you see some errors occurred, glstarview and partiview did not properly build
on this machine (a missing library), and there was no fortran-95 compiler available for EZ to be compiled.
Even though NEMO returned with 209 binaries, this is not a full success, where 222 have been seen.

B.6 ACS

Say something about the Hut & Makino ACS series. ACS1 (C++) vs. ACS2 (ruby).



Appendix C

Using CVS

If you have never heard of CVS it is worth reading this appendix and considering to use it (a few packages in
manybody are CVS enabled, encouraging you to use this timesaving mode). CVS is one of the more popular
source code control systems, which simplifies keeping your source code up to date with a master version. It
can be useful for collaborators to work on a project (source code, a paper), but also for a single developer
testing out code on various machines.

C.1 Anonymous CVS

Most likely you will first start by using the so-called “anonymous CVS” method, which works much like
anonymous-ftp. It is however important to enable your CVS account first, using the cvs login command1:

1% cvs -d :pserver:anonymous@cvs.astro.umd.edu:/home/cvsroot login

Logging in to :pserver:anonymous@cvs.astro.umd.edu:2401/home/cvsroot

CVS password:

simply hit return here, since there is no password. You only need to do this once per CVS account, as the
account information is added to a file .cvspass in your home directory.

C.2 Starting from scratch

1. The environment variable CVSROOT, or the -d flag to the cvs command, is needed to get accesss to
a repository. Use the one listed in the previous section after the -d flag.

2. You then need to checkout a new sandbox that mirrors a repository module (the -Q flag makes it much
less verbose:

1In this and age of security, there is a chance this command will hang and not continue. Port 2401 may be blocked by a

router near your connection
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# checkout nemo, assuming CVSROOT has been set

%1 cvs -Q co nemo

# checkout starlab, notice the somewhat odd looking module name under manybody

%2 cvs -Q co -d starlab manybody/starlab

C.3 Starting with an existing package that is CVS enabled

If you already have a directory tree that is “CVS enabled” (each directory will have a CVS subdirectory in
which administrative details of that directory are stored), life is even easier.

1. By default the contents of the CVS/Root file(s) will be used to get access to the repository. Otherwise,
as before, the CVSROOT environment variable, or the -d command option flag, can be used. Basically
you don’t need to worry about setting CVSROOT or using the -d flag here.

2. To check your source code for any needed updates: cvs -n -q update. You might get a response like:

? src/kernel/io/try.c <-- file not under CVS control

U man/man1/mkplummer.1 <-- newer file on the server

M man/man5/data.5 <-- you have a modified file

C src/nbody/init/mkplummer.c <-- a conflict!!! both server and you have modified

The first column designates the status of the file. We will treat the listed 4 cases seperately (there are
a few more, but not so common):

? These files can be safely ignored. They happened to be in the directory as a side-effect of installation
or some other tinkering you did. They could be added to CVS using the cvs add command.

U This means the file is new(er) at the server, and your CVS sandbox needs to be updated. A simple
command: cvs update.

P You might see this when you cvs update a file, instead of Updating the file, it is patched, taking much
less bandwith.

M This means your version of the file is newer than on the server, and as long as you have write permission
on the server, it can be returned with a simple command: cvs commit.

C This is the more complicated case of a conflict. Both your local version, as well as the server version,
have been modified independently. Most of the time CVS is actually able to make a version that
merges both modifications, though the developer should now check if the resulting code is correct. The
correct CVS order to fix this is a three step process: the code is updated, then edited and checked for
correctness, and finally committed back to the repository:

1% cvs update mkplummer.c

2% make/edit/check/debug mkplummer.c

3% cvs commit mkplummer.c
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C.4 cvsutils

In your manybody environment you will find a few perl scripts (dubbed cvsutils)2 that help with some
tedious CVS interactions, notably some tools when you are not online. Another common enough operation
is to change the CVS/Root (where your local $CVSROOT lives) from anonymous to somebody with write
permission, viz.

1% cd $NEMO

2% cat CVS/Root

:pserver:anonymous@cvs.astro.umd.edu:/home/cvsroot

3% cvschroot :pserver:pteuben@cvs.astro.umd.edu:/home/cvsroot

C.5 svn

The future of CVS is unclear. A lot of open source packages are switching to SubVersion (command: svn).
In practice the cvs and svn commands are nearly interchangeable.

C.6 git

A more recent innovation is the use of distributed CMS, such as git. This has the advantage of maintain-
ing/creating your own repository and only later merge them. The linux kernel is currently maintained using
git.

2See http://www.red-bean.com/cvsutils/
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~b/miriad

~a/test/miriad

~a/cvs/miriad

update

checkout
commit

"sandbox"

CVS repository

~ftp/pub/miriad.tar.gz

/home/miriad

export

import

Release Development

Experiment

"Mainline"

CVS branching

cvs:/home/cvsroot

Figure C.1: CVS flow diagram
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Using NEMO

A summary of useful things to know about NEMO:

1. NEMO is a large (250+) collection of programs, each performing a small task controlled by a set of
parameters.

2. the command line user interface (CLI) is a set of program keywords (unique to each program) and
system keywords (available to each program). Most often used system keywords are yapp= (plotting
device), debug= (increase debug level) and error= (pass over fatal errors at your own risk).

3. each program displays internal help using the option --help, help= or help=h. Use help=\? to see all
the kinds of help the CLI can give. Use the man or gman command to view or browse manual pages.

4. command line parameters do not need to have their keyword name given if the parameters are given
in the right order. E.g. mkplummer p10 10 is the same as mkplummer out=p10 nbody=10. Use help=

to see that order.

5. most programs have a manual page. Use the unix man command, or GUI tools like gman [under redhat
this is hidden in the yelp package]

6. data is mostly stored in binary files, for speed, accuracy and portability. Programs like tsf display
the contents of these files.

7. in Unix tradition data is often piped from one program to the next, the in=/out= filename needs to be
designated with a dash (e.g. in=-, out=-. Most programs have in/out as their 1st and 2nd parameter.

8. a large number of programs produce ASCII tables. Programs like tabplot and tabhist are convenient
endpoints to quickly present results graphically.

One or two overview plots on the packages and file formats in NEMO will now follow.
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Appendix E

Using Starlab

A summary of useful things to know about Starlab:

1. Starlab is a large (250+) collection of programs, each performing a small task controlled by a set of
parameters.

2. the command line user interface (CLI) is a set of flags

3. each program displays internal help using the option --help. It actually does this by tracking down
the source code and displaying the relevant help section of the source code.

4. data is mostly stored in special ascii files, with a hierarchical structure

5. in Unix tradition data is piped from one program to the next, and unlike in NEMO, unknown data is
generally passed onwards unmodified.
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Appendix F

Using AMUSE
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Appendix G

Cover Art

The figures on the cover page were made in the following way, printed out and cut and pasted the classical
way.

G.1 Collisional Orbit

Although the Figure8 orbit is perhaps very artistic, it is not very representative for orbits in collisional
systems, in fact, almost more appropriate for collisionless systems! The collisional orbit choosen was drawn
from the Pythagoran problem: 3 stars with masses 3, 4 and 5, on a pythagoran triangle where the long
sides opposite their mass have a length proportional to their mass. Initially all three stars are at rest. A file
$NEMODAT/pyth.dat contains the initial conditions:

# print out the initial conditions

1% snapprint $NEMODAT/pyth.dat m,x,y,z,vx,vy,vz

m x y z vx vy vz

3 1 3 0 0 0 0

4 -2 -1 0 0 0 0

5 1 -1 0 0 0 0

# integrate for a while

2% nbody00 $NEMODAT/pyth.dat pyth.out eta=0.01 deltat=0.01 tcrit=100 eps=0

time = 0 steps = 0 energy = -12.8167 cpu = 0 min

time = 0.01 steps = 1 energy = -12.8167 cpu = 0 min

...

time = 99.98 steps = 33940 energy = -12.7912 cpu = 0.0115 min

time = 99.99 steps = 33945 energy = -12.7912 cpu = 0.0115 min

time = 100 steps = 33949 energy = -12.7912 cpu = 0.0115 min

Time spent in searching for next advancement: 0.1

Energy conservation: 0.0254786 / -12.8167 = -0.00199189

Time resets needed 5977 times / 10001 dumps

# view Red=0 Green=1 Blue=2
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Figure G.1: Initial conditions for the Pythagorean problem (left, but notice **???**but they are** these are
not the official Szebeheley & Peters configuration we use in the example) and the orbit of the intermediate
mass (M=4) particle starting at (x,y) = (-2,-1).

# notice that although initially blue/green pair up, red intervenes

# and takes off with green heading up, leaving blue to wander south...

3% snapplot pyth.out trak=t xrange=-4:4 yrange=-4:4 color=’i==0?2.0/16.0:i==1?3.0/16.0:4.0/16.0’

# notice the final breakup occurs around time=82.4

4% snapprint pyth.out t,r | tabplot -

5% snapprint pyth.out t,r | tabplot - xmin=80 xmax=84

# need to track down some unexpected dependancies of the results on compiler version

# and options. this is of course somewhat disturbing.

# all the trouble starts at that very close encounter around T=82

6% stoo pyth.out - 1 100000 | orbplot - xrange=-4:4 yrange=-4:4

The 3-body problem is a chaotic problem. By perturbing the initial conditions even a little bit, you can get
drastically different results. This was shown in another paper by Shebehely & Peters (1967AJ.....72.1187S),
where the positions of the 3 bodies were all perturbed by of order 0.04, and this created a periodic solution.
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G.2 Collisionless Orbit

Here we are taking orbits from the logarithmic potential as defined by Binney & Tremaine (1987) in eq.
(2.54) and (3.77).

Φ(x, y) =
1

2
v2

0
ln

(

r2

c + x2 + y2/q2
)

The orbits in their Figure 3-7, our Figure G.2, are for q = 0.9, Rc = 0.14, v0 = 0.07.

# Create an orbit, much like the one in Figure 3-7 of BT87

1% mkorbit orb1 y=0.1 vx=-1 etot=-0.337 potname=log potpars=0,0.07,0.14,0.9

Using pattern speed = 0

pos: 0.000000 0.100000 0.000000

vel: -1.000000 1.330308 0.000000

etot: -0.337000

lz=0.100000

2% orbint orb1 orb1.out nsteps=10000 dt=0.01 ndiag=100

0.000000 1.384859 -1.721859 -0.337 -0

1.000000 0.074342 -0.411342 -0.3369998357925 -4.87263e-07

...

98.970000 1.434173 -1.771178 -0.3370046579526 1.38218e-05

99.980000 0.016410 -0.353415 -0.3370045122688 1.33895e-05

Energy conservation: 1.33895e-05

3% orbplot orb1.out xrange=-0.8:0.8 yrange=-0.8:0.8

G.3 Barred Galaxy

Here we produce an image of a simulated barred galaxy, overlayed with a contour diagram of a smoothed
distribution of stars. First a barred galaxy is created by integrating an unstable exponential disk for a few
rotation times.

# Create an unstable disk

1% mkexpdisk disk.in 4096

# integrate for a few rotation times

2% gyrfalcON disk.in disk.out tstop=5 step=1

# time energy -T/U |L| |v_cm| build force step accum

# ------------------------------------------------------------------------------------

0 -0.5751588 0.492 0.42204 2.2e-10 0.01 0.04 0.05 0.05

0.015625 -0.575151 0.49177 0.42204 5.8e-10 0 0.05 0.05 0.11

0.03125 -0.5751344 0.49121 0.42204 7.9e-10 0 0.06 0.06 0.17

...

4.9531 -0.5766627 0.50137 0.42187 1.3e-08 0.01 0.03 0.04 14.54
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Figure G.2: Orbits in a Logarithmic potential: Initial conditions y=0.1 result in a box orbit (left), y=0.2 in
a loop orbit (right). See also Figure 3-7 in BT87

4.9688 -0.5766588 0.50042 0.42186 1.3e-08 0 0.04 0.04 14.59

4.9844 -0.5766436 0.49937 0.42186 1.4e-08 0.01 0.04 0.05 14.64

5 -0.5766284 0.49822 0.42186 1.4e-08 0 0.04 0.04 14.68

# check up on energy conservation of the code

3% snapdiagplot disk.out

6 diagnostic frames read

Worst fractional energy loss dE/E = (E_t-E_0)/E_0 = 0.00255499 at T = 5

# nice composite diagram showing the initial, bar, and messed up state.

4% snapplot disk.out times=0,1,2,5 nxy=2,2 nxticks=3 nyticks=3

# now combine a particle plot with a smooth contour diagram

5% snapgrid disk.out ccd1 times=2 nx=256 ny=256

6% ccdsmooth ccd1 ccd2 0.1

7% ccdplot ccd2 0.03,0.1,0.3,1,3,10 yapp=p1.ps/vps

8% snapplot disk.out times=2 psize=0.01 yapp=p2.ps/vps

9% catpgps p1.ps p2.ps > p12.ps

10% snapgrid disk.out - times=2 nx=256 ny=256 zvar=vy mom=0 | ccdsmooth - ccd3.0s 0.1

11% snapgrid disk.out - times=2 nx=256 ny=256 zvar=vy mom=1 | ccdsmooth - ccd3.1s 0.1

12% ccdmath ccd3.1s,ccd3.0s ccd3.vel %1/%2

13% ccdplot ccd3.vel -0.9:0.9:0.3 blankval=0 yapp=p3.ps/vps

14% catpgps p2.ps p3.ps > p23.ps

# or if gif is used, left as an exercise to the reader

10% ccdplot ccd2 0.03,0.1,0.3,1,3,10 yapp=p1.gif/gif

11% snapplot disk.out times=2 color=2.0/16.0 yapp=p2.gif/gif
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Figure G.3: the making of a Barred Galaxy. On the left the particle distribution is overlayed with a 0.1
beam smeared density distribution. On the right the overlayed contours are that of the Y velocities. Notice
the S shaped contours in the bar region, due to the elliptical orbits along the bar.

12% See ImageMagick(1)

G.4 Disk-Bulge-Halo galaxy

A composite Disk-Bulge-Halo model in near equilibrium can be created using the Kuijken-Dubinski prescrip-
tion. A NEMO frontend to their tools is available via the program mkkd95. By default it will create a disk
with 8000 particles, a bulge with 4000 particles and a halo with 6000 particles. snapplot can be told to
color particles (assuming it has been compiled with a graphics driver that knows color, e.g. pgplot)

1% mkkd95 a0.dat

2% snapplot a0.dat color=’i<8000?2.0/16.0:(i<12000?3.0/16.0:4.0/16.0)’ yvar=z xrange=-8:8 yrange=-8:8 yapp=/gif

This particular plot actually has a black background, so after replacing black with white (e.g. using Gimp
or ImageMagic) and some axis cropping, the cover version is ready.
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G.5 Millenium Simulation

Here we had to cheat for moment. This picture was piched from the Millenium simulation, where Volker
Springel deserves all the credit! The cover picture is a small section sized 125 Mpc/h in the horizontal
direction.
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NEMO programming

NEMO is written in vanilla (mostly ANSI) C, with moderate use of macros. Most of this is written up in the
NEMO Users and Programmers Guide. We’ll just highlight a few things you might encounter if you would
browse the source code:

1. nemo main(); stdinc.h;

2. Instead of the laborious work of opening files and error checking

FILE *fp = fopen(argv[1],"r");

if (fp==NULL) {

fprintf(stderr,"File %s cannot be opened\n",argv[1]);

exit(1);

}

we typically use one-liners

stream istr = stropen(getparam("in"),"r");

which cause a fatal error in those common cases of “not found”, “no permission” etc.etc. stropen also
takes care of special files such as tt “-” and ‘‘.’’.

3. Instead of different types of printf() statements, use

error("Bad value of n=%d",n);

warning("Fixing n=%d",n);

dprintf(1,"Iteration n=%d sum=%g",n,sum);

controlled with the error= and debug= system keywords.

4. Random number are normally initialized in a generic way, as follows:
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iseed = set_xrandom(getparam("seed"))

with the following meaning for seed:

-2 pid

-1 centi-seconds since boot

0 seconds since 1970.0

n>0 your personal seed selection

there are controlled with the seed= program keyword.

H.1 Creating a new program

There are roughly three ways one can decide on how to add functionality to NEMO (i.e. creating a new
program):

1. Add a keyword to an existing program with nearly the same functionality. Be aware that you should
then make it backwards compatible, i.e. the default value for the keyword should reflect the way it
was working before to prevent surprising the old-timers. Also, don’t forget to add this new keyword
to the manual page (NEMO/man/man1 typically)

2. Clone an existing program, and give it a nice new name. This means you’ll also have to clone the
manual page (NEMO/man/man1 typically), and perhaps cross-references (in the SEE ALSO section)
of a few other manual pages. In most cases you may have to add an entry to the Makefile, at least
in the BINFILES= macro, to ensure it gets installed. Sometimes special rules are needed for binaries.
If you want the program to be part of the standard distribution, add an entry to the Testfile, so it
gets built when NEMO is installed and runs the testsuite. Also test, from $NEMO, if mknemo does not
get confused about naming conventions before the program is committed to CVS.

3. Write a whole new program. You can either use NEMO/src/scripts/template, and fill in the blanks,
or write it from scratch. See also previous comments on Makefile, Testfile and mknemo.

1% $NEMO/src/scripts/template foo a=1 b=2 n=10

2% bake foo

3% foo c=1

### Fatal error [foo]: Parameter "c" unknown
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Maintenance and Updates

Updates to the code can either be done via releases (tar files or tagged CVS) or in a “continuum” (CVS).

I.1 NEMO (version 3.2.3)

After installation, it can occur that it appears as if you have a missing program in NEMO, despite that a
manual page exists.

There are 3 quick and easy ways to install/update a program

1. The program just needs to be compiled, or you modified it,and needs to be placed back in the system:
mknemo program

2. The program was updated at the master site, so you need to update your CVS repository, and re-
compile it: mknemo -u program

3. A number of library routines were updated, and therefore the program should be recompiled and/or
relinked: mknemo -l -u program

I.2 STARLAB (version 4.2.2)

be sure to update this: since the last summerschool starlab install was overhauled

Similar to NEMO there is a script mkstarlab available which makes it relatively easy to update or recompile
the code under most circumstances.

1. Just (re)compile the program: mkstarlab program
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2. Fetch a new version via CVS and recompile a program: mkstarlab -u program

3. Update the code, recompile the library and the recompile the program: mkstarlab -l -u program

I.3 Other

...not yet...
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Libraries
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Appendix K

Troubleshooting

Compiling manybody can be a chore, since it contains many packages and modules, each of which can have
some dependancies on the system. If you are running linux, one of the most common things not installed
is the development libraries for X windows and perhaps a few other libraries. For RH9 this would be
XFree86-devel, for FC4 xorg-devel. Mesa is another often missed package (needed for partiview).

K.1 Known Problems/ToDo’s

1. The default shell should be (t)csh, there is some limited (ba)sh support.

2. nbody4 is now available, though may be called Brute4 (Nbody4 needs the GRAPE hardware and Grape
libraries)

3. kira --help sometimes will complain “source file unavailable”

4. The gman command could be be missing on your machine. It’s very nice to have though!

5. Q=0 for runbody1 when in= is used... bug in the wrapper interface

6. dtos suffers from some quick hacks put in for the AAS NVO demo: Aux/Acceleration/Potential are
meaningless.

7. snapplot multipanel has odd colors (grey) showing up

8. fix MANPATH for NEMO under linux

9. tkrun demos / python?

10. overview diagrams of the hierarchy and layout of NEMO, Starlab, Manybody

11. add Kawaii’s code

12. units(1) and units(5) unfinished
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13. (i)python, matplotlib and various interfaces for NEMO?

14. Fink/DarwinPorts

15. NAM (Shaya/Peel)

16. Romeo’s wavelet code (has some GPL issues)

17. SuperBox

18. starlab has some installation problems some compilers (e.g. on FC5, but mdk10 ok) - related to their
internal autoconf version?

19. Greengard & Rochlin’s FMM Multipole Moment Code (simple C version via Umiacs)

20. single vs. double precision: gadget can actually be compiled in double precision mode, but the gad-
getsnap/snapgadget programs are likely to break. gyrfalcON is mostly compiled in double mode in
NEMO, but Walter will most likely prefer float.

21. (gyr)falcON may need to be re-compiled without the -ffast-math option (see OPTFLAGS in make/defs).
Otherwise it has the tendency to crash. (e.g. AMD64 with gcc 3.4.5 and intel with gcc 4.1.0)

22. intel compiler can speed up a lot

23. 64 bit issues: one of the current problems with fortran is the switch from g77 to gfortran. The former
cannot handle many 64 bit issues, where gfortran is able to do so. gfortran is however more ANSI
strict in language features, but does handle (some) fortran-95 . To make things more confuising, your
system may also contain g95. If you decide to compile NEMO with gfortran, make sure no g77 is used
where data is transformed with unfio, as the header size is 4 in g77. There are also compiler issues.
Sometimes gfortran is faster (magalie improved from 49ẗo 22̈, but mkkd95 ran slower, from 38ẗo 56̈!).

K.2 Unknown Problems

This section merely exists to not confuse Piet, and is otherwise left to your investigation.
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