
196 Chapter 3: The Orbits of Stars

about the center of the galaxy. For small-amplitude librations, the libration
frequency is p, consistent with our assumption that the oscillation frequency
is of order ǫ1/2 when Φb is of order ǫ. Large-amplitude librations of this kind
may account for the rings of material often seen in barred galaxies (page 538).

We may obtain the shape of the orbit from equation (3.152) by using

equation (3.156) to eliminate ϕ̇1 = 1
2
ψ̇:

R1 = −
2R0Ω0ϕ̇1

4Ω2
0 − κ2

0

= ±
21/2R0Ω0

4Ω2
0 − κ2

0

√
Ep + p2 cos(2ϕ1). (3.157)

We leave as an exercise the demonstration that when Ep ≫ p2, equation
(3.157) describes the same orbits as are obtained from (3.148a) with C1 = 0
and Ω 6= Ωb.

The analysis of this subsection complements the analysis of motion near
the Lagrange points in §3.3.2. The earlier analysis is valid for small oscil-
lations around a Lagrange point of an arbitrary two-dimensional rotating
potential, while the present analysis is valid for excursions of any amplitude
in azimuth around the Lagrange points L4 and L5, but only if the potential
is nearly axisymmetric.

3.4 Numerical orbit integration

In most stellar systems, orbits cannot be computed analytically, so effective
algorithms for numerical orbit integration are among the most important
tools for stellar dynamics. The orbit-integration problems we have to address
vary in complexity from following a single particle in a given, smooth galactic
potential, to tens of thousands of interacting stars in a globular cluster, to
billions of dark-matter particles in a simulation of cosmological clustering.
In each of these cases, the dynamics is that of a Hamiltonian system: with N
particles there are 3N coordinates that form the components of a vector q(t),
and 3N components of the corresponding momentum p(t). These vectors
satisfy Hamilton’s equations,

q̇ =
∂H

∂p
; ṗ = −

∂H

∂q
, (3.158)

which can be written as
dw

dt
= f(w, t), (3.159)

where w ≡ (q,p) and f ≡ (∂H/∂p,−∂H/∂q). For simplicity we shall as-
sume in this section that the Hamiltonian has the formH(q,p) = 1

2
p2+Φ(q),

although many of our results can be applied to more general Hamiltonians.
Given a phase-space position w at time t, and a timestep h, we require an

3.4 Numerical orbit integration 197

algorithm—an integrator—that generates a new position w′ that approxi-
mates the true position at time t′ = t+h. Formally, the problem to be solved
is the same whether we are following the motion of a single star in a given
potential, or the motion of 1010 particles under their mutual gravitational
attraction.

The best integrator to use for a given problem is determined by several
factors:
• How smooth is the potential? The exploration of orbits in an analytic

model of a galaxy potential places fewer demands on the integrator than
following orbits in an open cluster, where the stars are buffeted by close
encounters with their neighbors.

• How cheaply can we evaluate the gravitational field? At one extreme,
evaluating the field by direct summation in simulations of globular clus-
ter with ∼> 105 particles requires O(N2) operations, and thus is quite
expensive compared to the O(N) cost of orbit integrations. At the
other extreme, tree codes, spherical-harmonic expansions, or particle-
mesh codes require O(N lnN) operations and thus are comparable in
cost to the integration. So the integrator used in an N-body simulation
of a star cluster should make the best possible use of each expensive but
accurate force evaluation, while in a cosmological simulation it is better
to use a simple integrator and evaluate the field more frequently.

• How much memory is available? The most accurate integrators use the
position and velocity of a particle at several previous timesteps to help
predict its future position. When simulating a star cluster, the number
of particles is small enough (N ∼< 105) that plenty of memory should be
available to store this information. In a simulation of galaxy dynamics
or a cosmological simulation, however, it is important to use as many
particles as possible, so memory is an important constraint. Thus for
such simulations the optimal integrator predicts the future phase-space
position using only the current position and gravitational field.

• How long will the integration run? The answer can range from a few
crossing times for the simulation of a galaxy merger to 105 crossing
times in the core of a globular cluster. Long integrations require that
the integrator does not introduce any systematic drift in the energy or
other integrals of motion.

Useful references include Press et al. (1986), Hairer, Lubich, & Wanner
(2002), and Aarseth (2003).

3.4.1 Symplectic integrators

(a) Modified Euler integrator Let us replace the original Hamiltonian

H(q,p) = 1
2
p2 + Φ(q) by the time-dependent Hamiltonian

Hh(q,p, t) = 1
2
p2 + Φ(q)δh(t), where δh(t) ≡ h

∞∑

j=−∞

δ(t− jh) (3.160)

198 Chapter 3: The Orbits of Stars

is an infinite series of delta functions (Appendix C.1). Averaged over a time
interval that is long compared to h, 〈Hh〉 ≃ H , so the trajectories determined
by Hh should approach those determined by H as h→ 0.

Hamilton’s equations for Hh read

q̇ =
∂Hh

∂p
= p ; ṗ = −

∂Hh

∂q
= −∇Φ(q)δh(t). (3.161)

We now integrate these equations from t = −ǫ to t = h−ǫ, where 0 < ǫ≪ h.
Let the system have coordinates (q,p) at time t = −ǫ, and first ask for
its coordinates (q,p) at t = +ǫ. During this short interval q changes by a
negligible amount, and p suffers a kick governed by the second of equations
(3.161). Integrating this equation from t = −ǫ to ǫ is trivial since q is fixed,
and we find

q = q ; p = p − h∇Φ(q); (3.162a)

this is called a kick step because the momentum changes but the position
does not. Next, between t = +ǫ and t = h− ǫ, the value of the delta function
is zero, so the system has constant momentum, and Hamilton’s equations
yield for the coordinates at t = h− ǫ

q′ = q + hp ; p′ = p; (3.162b)

this is called a drift step because the position changes but the momentum
does not. Combining these results, we find that over a timestep h starting
at t = −ǫ the Hamiltonian Hh generates a map (q,p) → (q′,p′) given by

p′ = p− h∇Φ(q) ; q′ = q + hp′. (3.163a)

Similarly, starting at t = +ǫ yields the map

q′ = q + hp ; p′ = p− h∇Φ(q′). (3.163b)

These maps define the “kick-drift” or “drift-kick” modified Euler inte-
grator. The performance of this integrator in a simple galactic potential is
shown in Figure 3.21.

The map induced by any Hamiltonian is a canonical or symplectic map
(page 803), so it can be derived from a generating function. It is simple
to confirm using equations (D.93) that the generating function S(q,p′) =

q ·p′+ 1
2
hp′

2
+hΦ(q) yields the kick-drift modified Euler integrator (3.163a).

According to the modified Euler integrator, the position after timestep
h is

q′ = q + hp′ = q + hp− h2
∇Φ(q), (3.164)

while the exact result may be written as a Taylor series,

q′ = q + hq̇(t = 0) + 1
2
h2q̈(t = 0) + O(h3) = q + hp − 1

2
h2

∇Φ(q) + O(h3).
(3.165)

3.4 Numerical orbit integration 199

Figure 3.21 Fractional energy error as a function of time for several integrators, following
a particle orbiting in the logarithmic potential Φ(r) = ln r. The orbit is moderately ec-
centric (apocenter twice as big as pericenter). The timesteps are fixed, and chosen so that
there are 300 evaluations of the force or its derivatives per period for all of the integrators.
The integrators shown are kick-drift modified Euler (3.163a), leapfrog (3.166a), Runge–
Kutta (3.168), and Hermite (3.172a–d). Note that (i) over moderate time intervals, the
errors are smallest for the fourth-order integrators (Runge–Kutta and Hermite), interme-
diate for the second-order integrator (leapfrog), and largest for the first-order integrator
(modified Euler); (ii) the energy error of the symplectic integrators does not grow with
time.

The error after a single step of the modified Euler integrator is seen to be
O(h2), so it is said to be a first-order integrator.

Since the mappings (3.163) are derived from the Hamiltonian (3.160),
they are symplectic, so either flavor of the modified Euler integrator is a
symplectic integrator. Symplectic integrators conserve phase-space vol-
ume and Poincaré invariants (Appendix D.4.2). Consequently, if the inte-
grator is used to advance a series of particles that initially lie on a closed
curve in the (qi, pi) phase plane, the curve onto which it moves the parti-
cles has the same line integral

∮
pidqi around it as the original curve. This

conservation property turns out to constrain the allowed motions in phase
space so strongly that the usual tendency of numerical orbit integrations to
drift in energy (sometimes called numerical dissipation, even though the
energy can either decay or grow) is absent in symplectic integrators (Hairer,

200 Chapter 3: The Orbits of Stars

Lubich, & Wanner 2002).

Leapfrog integrator By alternating kick and drift steps in more elab-
orate sequences, we can construct higher-order integrators (Yoshida 1993);
these are automatically symplectic since they are the composition of maps
(the kick and drift steps) that are symplectic. The simplest and most widely
used of these is the leapfrog or Verlet integrator in which we drift for 1

2
h,

kick for h and then drift for 1
2
h:

q1/2 = q + 1
2
hp ; p′ = p − h∇Φ(q1/2) ; q′ = q1/2 + 1

2
hp′. (3.166a)

This algorithm is sometimes called “drift-kick-drift” leapfrog; an equally
good form is “kick-drift-kick” leapfrog:

p1/2 = p − 1
2
h∇Φ(q) ; q′ = q + hp1/2 ; p′ = p1/2 −

1
2
h∇Φ(q′). (3.166b)

Drift-kick-drift leapfrog can also be derived by considering motion in the
Hamiltonian (3.160) from t = − 1

2
h to t = 1

2
h.

The leapfrog integrator has many appealing features: (i) In contrast
to the modified Euler integrator, it is second- rather than first-order ac-
curate, in that the error in phase-space position after a single timestep is
O(h3) (Problem 3.26). (ii) Leapfrog is time reversible in the sense that if
leapfrog advances the system from (q,p) to (q′,p′) in a given time, it will
also advance it from (q′,−p′) to (q,−p) in the same time. Time-reversibility
is a constraint on the phase-space flow that, like symplecticity, suppresses
numerical dissipation, since dissipation is not a time-reversible phenomenon
(Roberts & Quispel 1992; Hairer, Lubich, & Wanner 2002). (iii) A sequence
of n leapfrog steps can be regarded as a drift step for 1

2
h, then n kick-drift

steps of the modified Euler integrator, then a drift step for − 1
2
h; thus if

n ≫ 1 the leapfrog integrator requires negligibly more work than the same
number of steps of the modified Euler integrator. (iv) Leapfrog also needs
no storage of previous timesteps, so is economical of memory.

Because of all these advantages, most codes for simulating collisionless
stellar systems use the leapfrog integrator. Time-reversible, symplectic inte-
grators of fourth and higher orders, derived by combining multiple kick and
drift steps, are described in Problem 3.27 and Yoshida (1993).

One serious limitation of symplectic integrators is that they work well
only with fixed timesteps, for the following reason. Consider an integrator
with fixed timestep h that maps phase-space coordinates w to w′ = W(w, h).
The integrator is symplectic if the function W satisfies the symplectic con-
dition (D.78), which involves the Jacobian matrix gαβ = ∂Wα/∂wβ. Now
suppose that the timestep is varied, by choosing it to be some function h(w)

of location in phase space, so w′ = W[w, h(w)] ≡ W̃(w). The Jacobian

matrix of W̃ is not equal to the Jacobian matrix of W, and in general will
not satisfy the symplectic condition; in words, a symplectic integrator with
fixed timestep is generally no longer symplectic once the timestep is varied.

3.4 Numerical orbit integration 201

Fortunately, the geometric constraints on phase-space flow imposed by
time-reversibility are also strong, so the leapfrog integrator retains its good
behavior if the timestep is adjusted in a time-reversible manner, even though
the resulting integrator is no longer symplectic. Here is one way to do this:
suppose that the appropriate timestep h is given by some function τ(w) of
the phase-space coordinates. Then we modify equations (3.166a) to

q1/2 = q + 1
2
hp ; p1/2 = p − 1

2
h∇Φ(q1/2),

t′ = t+ 1
2
(h+ h′),

p′ = p1/2 −
1
2
h′∇Φ(q1/2) ; q′ = q1/2 + 1

2
h′p′.

(3.167)

Here h′ is determined from h by solving the equation u(h, h′) = τ(q1/2,p1/2),
where τ(q,p) is the desired timestep at (q,p) and u(h, h′) is any symmetric
function of h and h′ such that u(h, h) = h; for example, u(h, h′) = 1

2
(h+ h′)

or u(h, h′) = 2hh′/(h+ h′).

3.4.2 Runge–Kutta and Bulirsch–Stoer integrators

To follow the motion of particles in a given smooth gravitational potential
Φ(q) for up to a few hundred crossing times, the fourth-order Runge–Kutta
integrator provides reliable transportation. The algorithm is

k1 = hf(w, t) ; k2 = hf(w + 1
2
k1, t+ 1

2
h),

k3 = hf(w + 1
2
k2, t+

1
2
h) ; k4 = hf(w + k3, t+ h),

w′ = w + 1
6
(k1 + 2k2 + 2k3 + k4) ; t′ = t+ h.

(3.168)
The Runge–Kutta integrator is neither symplectic nor reversible, and it re-
quires considerably more memory than the leapfrog integrator because mem-
ory has to be allocated to k1, . . . ,k4. However, it is easy to use and provides
fourth-order accuracy.

The Bulirsch–Stoer integrator is used for the same purposes as the
Runge–Kutta integrator; although more complicated to code, it often sur-
passes the Runge–Kutta integrator in performance. The idea behind this
integrator is to estimate w(t+ h) from w(t) using first one step of length h,
then two steps of length h/2, then four steps of length h/4, etc., up to 2K

steps of length h/2K for some predetermined number K. Then one extrap-
olates this sequence of results to the coordinates that would be obtained in
the limit K → ∞. Like the Runge–Kutta integrator, this integrator achieves
speed and accuracy at the cost of the memory required to hold intermediate
results. Like all high-order integrators, the Runge–Kutta and Bulirsch–Stoer
integrators work best when following motion in smooth gravitational fields.

202 Chapter 3: The Orbits of Stars

3.4.3 Multistep predictor-corrector integrators

We now discuss more complex integrators that are widely used in simulations
of star clusters. We have a trajectory that has arrived at some phase-space
position w0 at time t0, and we wish to predict its position w1 at t1. The gen-
eral idea is to assume that the trajectory w(t) is a polynomial function of time
wpoly(t), called the interpolating polynomial. The interpolating polyno-
mial is determined by fitting to some combination of the present position
w0, the past positions, w−1,w−2, . . . at times t−1, t−2, . . ., and the present
and past phase-space velocities, which are known through ẇj = f(wj , tj).
There is no requirement that f is derived from Hamilton’s equations, so these
methods can be applied to any first-order differential equations; on the other
hand they are not symplectic.

If the interpolating polynomial has order k, then the error after a small
time interval h is given by the first term in the Taylor series for w(t) not
represented in the polynomial, which is O(hk+1). Thus the order of the
integrator is k.12

The Adams–Bashforth multistep integrator takes wpoly to be the
unique kth-order polynomial that passes through w0 at t0 and through the
k points (t−k+1, ẇ−k+1), . . . , (t0, ẇ0).

Explicit formulae for the Adams–Bashforth integrators are easy to find
by computer algebra; however, the formulae are too cumbersome to write
here except in the special case of equal timesteps, tj+1 − tj = h for all j.
Then the first few Adams–Bashforth integrators are

w1 = w0 + h





ẇ0 (k = 1)
3
2
ẇ0 −

1
2
ẇ−1 (k = 2)

23
12

ẇ0 −
4
3
ẇ−1 + 5

12
ẇ−2 (k = 3)

55
24

ẇ0 −
59
24

ẇ−1 + 37
24

ẇ−2 −
3
8
ẇ−3 (k = 4).

(3.169)

The case k = 1 is called Euler’s integrator, and usually works rather badly.
The Adams–Moulton integrator differs from Adams–Bashforth only

in that it computes the interpolating polynomial from the position w0 and
the phase-space velocities ẇ−k+2, . . . , ẇ1. For equal timesteps, the first few
Adams–Moulton integrators are

w1 = w0 + h





ẇ1 (k = 1)
1
2
ẇ1 + 1

2
ẇ0 (k = 2)

5
12

ẇ1 + 2
3
ẇ0 −

1
12

ẇ−1 (k = 3)
3
8
ẇ1 + 19

24
ẇ0 −

5
24

ẇ−1 + 1
24

ẇ−2 (k = 4).

(3.170)

12 Unfortunately, the term “order” is used both for the highest power retained in the
Taylor series for w(t), tk, and the dependence of the one-step error on the timestep, hk+1;
fortunately, both orders are the same.

3.4 Numerical orbit integration 203

Since ẇ1 is determined by the unknown phase-space position w1 through
ẇ1 = f(w1, t1), equations (3.170) are nonlinear equations for w1 that must
be solved iteratively. The Adams–Moulton integrator is therefore said to be
implicit, in contrast to Adams–Bashforth, which is explicit.

The strength of the Adams–Moulton integrator is that it determines
w1 by interpolating the phase-space velocities, rather than by extrapolating
them, as with Adams–Bashforth. This feature makes it a more reliable and
stable integrator; the cost is that a nonlinear equation must be solved at
every timestep.

In practice the Adams–Bashforth and Adams–Moulton integrators are
used together as a predictor-corrector integrator. Adams–Bashforth is
used to generate a preliminary value w1 (the prediction or P step), which
is then used to generate ẇ1 = f(w1, t1) (the evaluation or E step), which is
used in the Adams–Moulton integrator (the corrector or C step). This three-
step sequence is abbreviated as PEC. In principle one can then iterate the
Adams–Moulton integrator to convergence through the sequence PECEC· · ·;
however, this is not cost-effective, since the Adams–Moulton formula, even
if solved exactly, is only an approximate representation of the differential
equation we are trying to solve. Thus one usually stops with PEC (stop
the iteration after evaluating w1 twice) or PECE (stop the iteration after
evaluating ẇ1 twice).

When these methods are used in orbit integrations, the equations of
motion usually have the form ẋ = v, v̇ = −∇Φ(x, t). In this case it is best
to apply the integrator only to the second equation, and to generate the
new position x1 by analytically integrating the interpolating polynomial for
v(t)—this gives a formula for x1 that is more accurate by one power of h.

Analytic estimates (Makino 1991) suggest that the one-step error in the
Adams–Bashforth–Moulton predictor-corrector integrator is smaller than the
error in the Adams–Bashforth integrator by a factor of 5 for k = 2, 9 for
k = 3, 13 for k = 4, etc. These analytic results, or the difference between the
predicted and corrected values of w1, can be used to determine the longest
timestep that is compatible with a prescribed target accuracy—see §3.4.5.

Because multistep integrators require information from the present time
and k − 1 past times, a separate startup integrator, such as Runge–Kutta,
must be used to generate the first k− 1 timesteps. Multistep integrators are
not economical of memory because they store the coefficients of the entire
interpolating polynomial rather than just the present phase-space position.

3.4.4 Multivalue integrators

By differentiating the equations of motion ẇ = f(w) with respect to time, we
obtain an expression for ẅ, which involves second derivatives of the poten-
tial, ∂2Φ/∂qi∂qj. If our Poisson solver delivers reliable values for these second
derivatives, it can be advantageous to use ẅ or even higher time derivatives
of w to determine the interpolating polynomial wpoly(t). Algorithms that

204 Chapter 3: The Orbits of Stars

employ the second and higher derivatives of w are called multivalue inte-
grators.

In the simplest case we set wpoly(t) to the kth-order polynomial that
matches w and its first k time derivatives at t0; this provides k+1 constraints
for the k + 1 polynomial coefficients and corresponds to predicting w(t) by
its Taylor series expansion around t0. A more satisfactory approach is to
determine wpoly(t) from the values taken by w, ẇ, ẅ, etc., at both t0 and
t1. Specifically, for even k only, we make wpoly(t) the kth-order polynomial
that matches w at t0 and its first 1

2
k time derivatives at both t0 and t1—once

again this provides 1 + 2× 1
2
k = k+ 1 constraints and hence determines the

k + 1 coefficients of the interpolating polynomial. The first few integrators
of this type are

w1 = w0 +





1
2
h(ẇ0 + ẇ1) (k = 2)

1
2
h(ẇ0 + ẇ1) + 1

12
h2(ẅ0 − ẅ1) (k = 4)

1
2
h(ẇ0 + ẇ1) + 1

10
h2(ẅ0 − ẅ1)

+ 1
120

h3(
...
w0 +

...
w1) (k = 6).

(3.171)

Like the Adams–Moulton integrator, all of these integrators are implicit, and
in fact the first of these formulae is the same as the second-order Adams–
Moulton integrator in equation (3.170). Because these integrators employ
information from only t0 and t1, there are two significant simplifications
compared to multistep integrators: no separate startup procedure is needed,
and the formulae look the same even if the timestep is variable.

Multivalue integrators are sometimes called Obreshkov (or Obrechkoff)
or Hermite integrators, the latter name arising because they are based on
Hermite interpolation, which finds a polynomial that fits specified values of
a function and its derivatives (Butcher 1987).

Makino & Aarseth (1992) and Makino (2001) recommend a fourth-order
multivalue predictor-corrector integrator for star-cluster simulations. Their
predictor is a single-step, second-order multivalue integrator, that is, a Tay-
lor series including terms of order h2. Writing dv/dt = g, where g is the
gravitational field, their predicted velocity is

vp,1 = v0 + hg0 + 1
2
h2ġ0. (3.172a)

The predicted position is obtained by analytically integrating the interpolat-
ing polynomial for v,

xp,1 = x0 + hv0 + 1
2
h2g0 + 1

6
h3ġ0. (3.172b)

The predicted position and velocity are used to compute the gravitational
field and its time derivative at time t1, g1 and ġ1. These are used to correct
the velocity using the fourth-order formula (3.171):

v1 = v0 + 1
2
h(g0 + g1) + 1

12
h2(ġ0 − ġ1); (3.172c)

3.4 Numerical orbit integration 205

in words, v1 is determined by the fourth-order interpolating polynomial
vpoly(t) that satisfies the five constraints vpoly(t0) = v0, v̇poly(ti) = gi,
v̈poly(ti) = ġi for i = 0, 1.

To compute the corrected position, the most accurate procedure is to
integrate analytically the interpolating polynomial for v, which yields:

x1 = x0 + hv0 + 1
20
h2(7g0 + 3g1) + 1

60
h3(3ġ0 − 2ġ1). (3.172d)

The performance of this integrator, often simply called the Hermite integra-
tor, is illustrated in Figure 3.21.

3.4.5 Adaptive timesteps

Except for the simplest problems, any integrator should have an adap-
tive timestep, that is, an automatic procedure that continually adjusts
the timestep to achieve some target level of accuracy. Choosing the right
timestep is one of the most challenging tasks in designing a numerical in-
tegration scheme. Many sophisticated procedures are described in publicly
available integration packages and numerical analysis textbooks. Here we
outline a simple approach.

Let us assume that our goal is that the error in w after some short time τ
should be less than ǫ|w0|, where ǫ≪ 1 and w0 is some reference phase-space
position. We first move from w to w2 by taking two timesteps of length
h ≪ τ . Then we return to w and take one step of length 2h to reach w1.
Suppose that the correct position after an interval 2h is w′, and that our
integrator has order k. Then the errors in w1 and w2 may be written

w1 − w′ ≃ (2h)k+1E ; w2 − w′ ≃ 2hk+1E, (3.173)

where E is an unknown error vector. Subtracting these equations to eliminate
w′, we find E ≃ (w1 − w2)/[2(2k − 1)hk+1]. Now if we advance for a time
τ , using n ≡ τ/h′ timesteps of length h′, the error will be

∆ = nh′
k+1

E = (w1 − w2)
τh′

k

2(2k − 1)hk+1
. (3.174)

Our goal that |∆| ∼< ǫ|w0| will be satisfied if

h′ < hmax ≡

(
2(2k − 1)

h

τ

ǫ|w0|

|w1 − w2|

)1/k

h. (3.175)

If we are using a predictor-corrector scheme, a similar analysis can be
used to deduce hmax from the difference of the phase-space positions returned
by the predictor and the corrector, without repeating the entire predictor-
corrector sequence.

206 Chapter 3: The Orbits of Stars

3.4.6 Individual timesteps

The density in many stellar systems varies by several orders of magnitude
between the center and the outer parts, and as a result the crossing time of
orbits near the center is much smaller than the crossing time in the outer
envelope. For example, in a typical globular cluster the crossing time at the
center is ∼< 1 Myr, while the crossing time near the tidal radius is ∼ 100 Myr.
Consequently, the timestep that can be safely used to integrate the orbits of
stars is much smaller at the center than the edge. It is extremely inefficient
to integrate all of the cluster stars with the shortest timestep needed for any

star, so integrators must allow individual timesteps for each star.
If the integrator employs an interpolating polynomial, the introduction

of individual timesteps is in principle fairly straightforward. To advance a
given particle, one uses the most recent interpolating polynomials of all the
other particles to predict their locations at whatever times the integrator
requires, and then evaluates the forces between the given particle and the
other particles.

This procedure makes sense if the Poisson solver uses direct summation
(§2.9.1). However, with other Poisson solvers there is a much more efficient
approach. Suppose, for example, that we are using a tree code (§2.9.2).
Then before a single force can be evaluated, all particles have to be sorted
into a tree. Once that has been done, it is comparatively inexpensive to
evaluate large numbers of forces; hence to minimize the computational work
done by the Poisson solver, it is important to evaluate the forces on many
particles simultaneously. A block timestep scheme makes this possible
whilst allowing different timesteps for different particles, by quantizing the
timesteps. We now describe how one version of this scheme works with the
leapfrog integrator.

We assign each particle to one of K + 1 classes, such that particles in
class k are to be advanced with timestep hk ≡ 2kh for k = 0, 1, 2, . . . ,K.
Thus h is the shortest timestep (class 0) and 2Kh is the longest (class K).
The Poisson solver is used to evaluate the gravitational field at the initial
time t0, and each particle is kicked by the impulse − 1

2
hk∇Φ, corresponding

to the first part of the kick-drift-kick leapfrog step (3.166b). In Figure 3.22
the filled semicircles on the left edge of the diagram symbolize these kicks;
they are larger at the top of the diagram to indicate that the strength of the
kicks increases as 2k. Then every particle is drifted through time h, and the
Poisson solver is used only to find the forces on the particles in class 0, so
these particles can be kicked by −h∇Φ, which is the sum of the kicks at the
end of their first leapfrog step and the start of their second.

Next we drift all particles through h a second time, and use the Poisson
solver to find the forces on the particles in both class 0 and class 1. The
particles of class 0 are kicked by −h∇Φ, and the particles of class 1 are
kicked by −h1∇Φ = −2h∇Φ. After an interval 3h the particles in class 0
are kicked, after 4h the particles in classes 0, 1 and 2 are kicked, etc. This

3.4 Numerical orbit integration 207

Figure 3.22 Schematic of the block timestep scheme, for a system with 5 classes of
particles, having timestep h (class k = 0), 2h, . . . , 16h (class k = K = 4). The particles
are integrated for a total time of 16h. Each filled circle or half-circle marks the time
at which particles in a given class are kicked. Each vertical bar marks a time at which
particles in a class are paused in their drift step, without being kicked, in order to calculate
their contribution to the kick given to particles in lower classes. The kicks at the start
and end of the integration, t = 0 and t = 16h, are half as strong as the other kicks, and
so are denoted by half-circles.

process continues until all particles are due for a kick, after a time hK = 2Kh.
The final kick for particles in class k is − 1

2
hk∇Φ, which completes 2K−k

leapfrog steps for each particle. At this point it is prudent to reconsider
how the particles are assigned to classes in case some need smaller or larger
timesteps.

A slightly different block timestep scheme works well with a particle-
mesh Poisson solver (§2.9.3) when parts of the computational domain are
covered by finer meshes than others, with each level of refinement being by
a factor of two in the number of mesh points per unit length (Knebe, Green,
& Binney 2001). Then particles are assigned timesteps according to the
fineness of the mesh they are in: particles in the finest mesh have timestep
∆t = h, while particles in the next coarser mesh have ∆t = 2h, and so on.
Particles on the finest mesh are drifted through time 1

2
h before the density

is determined on this mesh, and the Poisson solver is invoked to determine
the forces on this mesh. Then the particles on this mesh are kicked through
time h and drifted through time 1

2
h. Then the same drift-kick-drift sequence

is used to advance particles on the next coarser mesh through time 2h. Now
these particles are ahead in time of the particles on the finest mesh. This
situation is remedied by again advancing the particles on the finest mesh
by h with the drift-kick-drift sequence. Once the particles on the two finest

208 Chapter 3: The Orbits of Stars

meshes have been advanced through time 2h, we are ready to advance by
∆t = 4h the particles that are the next coarser mesh, followed by a repeat
of the operations that were used to advance the particles on the two finest
meshes by 2h. The key point about this algorithm is that at each level
k, particles are first advanced ahead of particles on the next coarser mesh,
and then the latter particles jump ahead of the particles on level k so the
next time the particles on level k are advanced, they are catching up with
the particles of the coarser mesh. Errors arising from moving particles in a
gravitational field from the surroundings that is out-of-date are substantially
canceled by errors arising from moving particles in an ambient field that has
run ahead of itself.

3.4.7 Regularization

In any simulation of a star cluster, sooner or later two particles will suffer
an encounter having a very small impact parameter. In the limiting case in
which the impact parameter is exactly zero (a collision orbit), the equation
of motion for the distance r between the two particles is (eq. D.33)

r̈ = −GM/r2, (3.176)

where M is the sum of the masses of the two particles. This equation is sin-
gular at r = 0, and a conscientious integrator will attempt to deal with the
singularity by taking smaller and smaller timesteps as r diminishes, thereby
bringing the entire N-body integration grinding to a halt. Even in a near-
collision orbit, the integration through pericenter will be painfully slow. This
problem is circumvented by transforming to a coordinate system in which
the two-body problem has no singularity—this procedure is called regular-
ization (Stiefel & Schiefele 1971; Mikkola 1997; Heggie & Hut 2003; Aarseth
2003). Standard integrators can then be used to solve the equations of mo-
tion in the regularized coordinates.

(a) Burdet–Heggie regularization The simplest approach to regular-
ization is time transformation. We write the equations of motion for the
two-body problem as

r̈ = −GM
r

r3
+ g, (3.177)

where g is the gravitational field from the other N − 2 bodies in the simula-
tion, and change to a fictitious time τ that is defined by

dt = r dτ. (3.178)

Denoting derivatives with respect to τ by a prime we find

ṙ =
dτ

dt

dr

dτ
=

1

r
r′ ; r̈ =

dτ

dt

d

dτ

1

r
r′ =

1

r2
r′′ −

r′

r3
r′. (3.179)

3.4 Numerical orbit integration 209

Figure 3.23 Fractional energy error from integrating one pericenter passage of a highly
eccentric orbit in a Keplerian potential, as a function of the number of force evaluations.
The orbit has semi-major axis a = 1 and eccentricity e = 0.99, and is integrated from
r = 1, ṙ < 0 to r = 1, ṙ > 0. Curves labeled by “RK” are followed using a fourth-
order Runge–Kutta integrator (3.168) with adaptive timestep control as described by
Press et al. (1986). The curve labeled “U” for “unregularized” is integrated in Cartesian
coordinates, the curve “BH” uses Burdet–Heggie regularization, and the curve “KS” uses
Kustaanheimo–Stiefel regularization. The curve labeled “U,LF” is followed in Cartesian
coordinates using a leapfrog integrator with timestep proportional to radius (eq. 3.167).
The horizontal axis is the number of force evaluations used in the integration.

Substituting these results into the equation of motion, we obtain

r′′ =
r′

r
r′ −GM

r

r
+ r2g. (3.180)

The eccentricity vector e (eq. 4 of Box 3.2) helps us to simplify this equation.
We have

e = v × (r × v) −GM êr

= |r′|2
r

r2
−
r′

r
r′ −GM

r

r
,

(3.181)

where we have used v = ṙ = r′/r and the vector identity (B.9). Thus
equation (3.180) can be written

r′′ = |r′|2
r

r2
− 2GM

r

r
− e + r2g. (3.182)

210 Chapter 3: The Orbits of Stars

The energy of the two-body orbit is

E2 = 1
2
v2 −

GM

r
=

|r′|2

2r2
−
GM

r
, (3.183)

so we arrive at the regularized equation of motion

r′′ − 2E2r = −e + r2g, (3.184)

in which the singularity at the origin has disappeared. This must be supple-
mented by equations for the rates of change of E2, e, and t with fictitious
time τ ,

E′

2 = g · r′ ; e′ = 2r(r′ · g) − r′(r · g) − g(r · r′) ; t′ = r. (3.185)

When the external field g vanishes, the energy E2 and eccentricity vector e
are constants, the equation of motion (3.184) is that of a harmonic oscillator
that is subject to a constant force −e, and the fictitious time τ is proportional
to the eccentric anomaly (Problem 3.29).

Figure 3.23 shows the fractional energy error that arises in the integra-
tion of one pericenter passage of an orbit in a Kepler potential with eccen-
tricity e = 0.99. The error is plotted as a function of the number of force
evaluations; this is the correct economic model if force evaluations dominate
the computational cost, as is true for N-body integrations with N ≫ 1. Note
that even with ∼

> 1000 force evaluations per orbit, a fourth-order Runge–
Kutta integrator with adaptive timestep is sometimes unable to follow the
orbit. Using the same integrator, Burdet–Heggie regularization reduces the
energy error by almost five orders of magnitude.

This figure also shows the energy error that arises when integrating the
same orbit using leapfrog with adaptive timestep (eq. 3.167) in unregularized
coordinates. Even though leapfrog is only second-order, it achieves an accu-
racy that substantially exceeds that of the fourth-order Runge–Kutta inte-
grator in unregularized coordinates, and approaches the accuracy of Burdet–
Heggie regularization. Thus a time-symmetric leapfrog integrator provides
much of the advantage of regularization without coordinate or time trans-
formations.

(b) Kustaanheimo–Stiefel (KS) regularization An alternative reg-
ularization procedure, which involves the transformation of the coordinates
in addition to time, can be derived using the symmetry group of the Kepler
problem, the theory of quaternions and spinors, or several other methods
(Stiefel & Schiefele 1971; Yoshida 1982; Heggie & Hut 2003). Once again
we use the fictitious time τ defined by equation (3.178). We also define a
four-vector u = (u1, u2, u3, u4) that is related to the position r = (x, y, z) by

u2
1 = 1

2
(x + r) cos2 ψ

u2
4 = 1

2
(x + r) sin2 ψ

u2 =
yu1 + zu4

x+ r

u3 =
zu1 − yu4

x+ r
,

(3.186)

3.5 Angle-action variables 211

where ψ is an arbitrary parameter. The inverse relations are

x = u2
1 − u2

2 − u2
3 + u2

4 ; y = 2(u1u2 − u3u4) ; z = 2(u1u3 + u2u4). (3.187)

Note that r = u2
1 + u2

2 + u2
3 + u2

4. Let Φe be the potential that generates the
external field g = −∇Φe. Then in terms of the new variables the equation
of motion (3.177) reads

u′′ − 1
2
Eu = − 1

4

∂

∂u

(
|u|2Φe

)
,

E = 1
2
v2 −

GM

r
+ Φe = 2

|u′|2

|u|2
−
GM

|u|2
+ Φe,

E′ = |u|2
∂Φe

∂t
; t′ = |u|2,

(3.188)

When the external force vanishes, the first of equations (3.188) is the equation
of motion for a four-dimensional harmonic oscillator.

Figure 3.23 shows the fractional energy error that arises in the integra-
tion of an orbit with eccentricity e = 0.99 using KS regularization. Using
the same integrator, the energy error is more than an order of magnitude
smaller than the error using Burdet–Heggie regularization.

3.5 Angle-action variables

In §3.1 we introduced the concept of an integral of motion and we saw that
every spherical potential admitted at least four integrals Ii, namely, the
Hamiltonian and the three components of angular momentum. Later we
found that orbits in flattened axisymmetric potentials frequently admit three
integrals, the classical integrals H and pφ, and the non-classical third inte-
gral. Finally in §3.3 we found that many orbits in planar non-axisymmetric
potentials admitted a non-classical integral in addition to the Hamiltonian.

In this section we explore the advantages of using integrals as coordi-
nates for phase space. Since elementary Newtonian or Lagrangian mechanics
restricts our choice of coordinates to ones that are rarely integrals, we work
in the more general framework of Hamiltonian mechanics (Appendix D). For
definiteness, we shall assume that there are three independent coordinates
(so phase space is six-dimensional) and that we have three analytic isolating
integrals Ii(x,v). We shall focus on a particular set of canonical coordinates,
called angle-action variables; the three momenta are integrals, called “ac-
tions,” and the conjugate coordinates are called “angles.” An orbit fortunate
enough to possess angle-action variables is called a regular orbit.

We start with a number of general results that apply to any system
of angle-action variables. Then in a series of subsections we obtain explicit

