HTML automatically generated with rman
Table of Contents
orbwood - Orbit Spectral Analysis  
orbwood in=in_orbit [parameter=value
...] 
orbwood analyzes orbits in terms of the Fourier transforms
of the coordinates. If spectra  are sufficiently linelike, they can be used
to find the fundamental frequencies and differentiate between various orbital
families (see also orbname(1NEMO)
 for an  alternative approach). 
The analysis
of 3-dimensional orbits is still under development. 
The following
parameters are recognized in any order if the keyword is also given: 
- in=in_orbit
- Input orbit, must be in orbit(5NEMO)
 format. The number of steps in the
orbit must be a power of 2, and must contain equal stepsizes. No default.
- var=v1,v2,... 
- Variable(s) to select to fourier analyze. Valid names are: x,
y, z, vx, vy, vz.  At most NDIM can be selected, if NDIM are selected, orbwood
will attempt to label and identify the lines. Default: x,y. 
- raw=out_table
- Output table raw spectrum, if desired. The table will contain 3 columns
which contain the angular frequency, amplitude  and phase (degrees). Default:
none. 
- maxlin= 
- Maximum number of lines to search for.  [Default: 50]. 
- fund=f1,f2,...
- Override the fundamental frequencies assumed for this orbit. Note that the
number of fundamental frequencies should be the same as number the number
of variables in var=. Default: attempted to retrieve from the analyzed spectra.
- fundmax=max_value 
- Maximum fundamental frequency to search for peaks in
the auto- correlation spectrum. [Default: 20]  
- freqdiff= 
- Maximum frequency
difference between two lines to consider them still the same line. This
is used in counting occurences of peaks in the auto-correlation table. The
output FREQ_DIFF will  contain the number of occurences and the frequency
of the auto-correlation table. [Default: 0.005]. 
Here an example shows
how to create and analyze  the loop orbit that is displayed in Figure 3
of Binney and Spergel (1982):
> mkorbit out=orb3 x=0.49 y=0.00 z=0 vx=1.4*sind(20) vy=1.4*cosd(20) vz=0 
        potname=log potpars=0,0.1,0.1,0.9
> orbint in=orb3 out=orb3.out ’nsteps=4096*10-1’ dt=0.01
        ndiag=4096 nsave=10 mode=leapfrog1
> orbwood in=orb3.out var=x,y
WOOD: (X) final relative resid = 0.00882583 using 11 lines
WOOD: (Y) final relative resid = 0.00889181 using 10 lines
      FREQ logAMP   PHASE       FREQ logAMP   PHASE 
    2.9485 -0.863 -0.3389     2.9485 -0.712 -1.9097 
    1.3576 -1.711 -1.0864     1.3576 -1.866  0.4844 
    7.2545 -3.738  1.3774     7.2545 -3.588 -0.1934 
    2.9560 -5.064  1.2586     2.9560 -4.913 -0.3123 
    8.8454 -5.206 -1.0167     8.8454 -5.072  3.6957 
    1.3636 -5.308  0.8119     1.3636 -5.463  2.3827 
    0.2333 -5.618  1.8340     0.2333 -5.897  0.2632 
    5.6636 -6.009  0.6298     2.9309 -6.231 -1.4457 
    4.5394 -6.327  0.4087     4.5394 -6.404 -1.1621 
    2.9309 -6.382  0.1251     2.9339 -6.615  1.0800 
    2.9339 -6.766  2.6507          -      -       - 
LABEL: fund(1) = 2.94846
LABEL: fund(2) = 2.94846
orbname(1NEMO)
, orbint(1NEMO)
, mkorbit(1NEMO)
, orbit(5NEMO)
 
J. Binney & D. Spergel 1982. ApJ 252, 308-321.
J. Binney & D. Spergel 1984.  MNRAS 206 159-177.
D. Wood, 1984.  J. Appl. Math 33, 229.
v=1.4 and E=-0.4 are not consistent for the BS82 example above. My example
could also have had v=1.404204003, to get to an  exact energy E=-0.4, BS82
isn’t clear if v or E was taken exactly. 
orbwood.c (main) wood.c, label.c (functions)
realft.c four1.c (numerical recipes functions)
Peter Teuben 
???              Original program              David Wood
sep-1982          mods                        David Spergel
aug-1983    mods                        James Binney
oct-1986    V2d.1 2D version            David Spergel
dec-93       V3.0 in C (NEMO) + 3d mods    Peter Teuben
Table of Contents