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ABSTRACT

In this, the second of a series of three papers, we continue a detailed description of ZEUS-2D, a numerical code
for the simulation of fluid dynamical flows in astrophysics including a self-consistent treatment of the effects of
magnetic fields and radiation transfer. In this paper, we give a detailed description of the magnetohydrodynamical
(MHD) algorithms in ZEUS-2D.

The recently developed constrained transport (CT) algorithm is implemented for the numerical evolution of
the components of the magnetic field for MHD simulations. This formalism guarantees the numerically evolved
field components will satisfy the divergence-free constraint at all times. We find, however, that the method used to
compute the electromotive forces must be chosen carefully to propagate accurately all modes of MHD wave
families (in particular shear Alfvén waves). A new method of computing the electromotive force is developed
using the method of characteristics (MOC). It is demonstrated through the results of an extensive series of MHD
test problems that the resulting hybrid MOC-CT method provides for the accurate evolution of all modes of MHD

wave families.

Subject headings: hydrodynamics — methods: numerical — MHD — radiative transfer

1. INTRODUCTION

Magnetic fields can play a crucial role in the dynamics
of many astrophysical systems. Magnetohydrodynamical
(MHD) processes have been identified as important to the
understanding of the tenuous solar corona, the interstellar me-
dium and star forming regions, protostellar mass outflows and
jets, accretion flows onto magnetic white dwarfs and neutron
stars, and extragalactic radio sources. It is vital that theoretical
modeling of these systems be able to account for MHD effects
in a self-consistent fashion. For this reason, we have developed
a general purpose fluid dynamics code, called ZEUS-2D, for
modeling astrophysical systems including a self-consistent
treatment of the effects of magnetic fields and radiation
transfer. In a previous paper (Stone & Norman 1992, hereafter
Paper I), we described the hydrodynamic (HD) algorithms in
ZEUS-2D. In this paper, we describe the algorithms imple-
mented in ZEUS-2D for the self-consistent evolution of mag-
netic fields which, when coupled to the HD algorithms de-
scribed in Paper I, allow for MHD simulations. In a
subsequent paper (Stone, Mihalas, & Norman 1992, hereafter
Paper IIT) we describe the two-dimensional radiation transport
module implemented in ZEUS-2D to allow for radiation hy-
drodynamical (RHD) simulations. _

The algorithms for evolving the magnetic field presented in
this paper are self-contained and independent of the HD algo-
rithms used. It would be possible to implement these algo-
rithms in almost any explicit Eulerian hydrocode based on the
method of finite-differences. The method could also be
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adapted to Lagrangean or time implicit codes with some modi-
fications. The level of discussion in this paper will be compre-
hensive enough to allow others to implement and/or modify
the method. We also present detailed results from an extensive
series of test problems we have performed on our algorithms,
which will be useful for comparisons to other schemes. We do
not present the results of specific applications of ZEUS-2D to
astrophysical problems here: such calculations are presented
elsewhere (Stone 1990).

The organization of this paper is as follows. We begin the
discussion in § 2 with the equations of MHD which must be
solved by ZEUS-2D. In § 3, we give a detailed description of
the algorithms implemented for evolving the magnetic fields,
and how these algorithms are incorporated into the rest of the
ZEUS-2D code. In § 4 we describe the results of the test prob-
lems we have performed, while in § 5 we summarize.

2. THE EQUATIONS OF MAGNETOHYDRODYNAMICS

The dynamics of a plasma which is threaded by a large-scale
magnetic field is influenced by the magnetic stresses exerted on
moving, charged particles. In turn, the motion of the charged
particles can influence the strength and distribution of the mag-
netic field. At the microscopic level (where particle gyroradii
are of the same order as the scale of interest ), the evolution of
the plasma is given by the Maxwell-Boltzmann equations
which describe the evolution of the particle distribution func-
tion. At a macroscopic level (where particle gyroradii are
much smaller than the scale of interest ), one can use a simpler,
statistical description of the system by evolving the macro-
scopic conserved quantities with the equations of ideal MHD.
Much like the equations of HD, these equations are derived by
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taking velocity moments of the Maxwell-Boltzmann equations
assuming quasi-neutrality and an Ohm’s Law closure for the
current density (see, e.g., Spitzer 1962). With these assump-
tions, we can write the MHD equations as (Jackson 1975)

Dp
ZP L V.p = 1
Dt+p v=0, (1)

2=_vp—pV<I>+4—l1r(VxB)xB, (2)

P Dt
D (e
pft(;)-—p\%v, (3)
%=VX(UXB), (4)

where the system of equations is closed with a given equation
of state p = p(p, e) and the Poisson equation which determines
the gravitational potential ®. In choosing the specific form of
the terms involving the magnetic field B in equations (2) and
(4), we have made several additional assumptions. For in-
stance, the Lorentz force term j X B added to the equation of
motion (2 ) ignores the displacement current in Ampere’s Law,
which is valid only for low-frequency phenomena, such as are
of interest here. In Faraday’s Law (eq. [4]) we have eliminated
the electric field by keeping only the advection term in the
generalized Ohm’s Law. This is justified because astrophysical
resistivities are generally so low that the magnetic field is effec-
tively “frozen-in” to the bulk of the fluid. For many astro-
physical systems the degree of ionization of the gas is quite
high, therefore collisions between neutral and charged parti-
cles are frequent enough to maintain a tight coupling between
the two, and the flux-freezing approximation is accurate. How-
ever, in some systems ( for example, the densest parts of molec-
ular clouds) the degree of ionization of the gas can drop sub-
stantially. In this case, collisions are not frequent enough to
maintain perfect coupling, and the plasma (and magnetic
field) can drift relative to the neutral gas, a process known as
ambipolar diffusion. In this work, we do not account for the
effects of ambipolar diffusion or resistivity. However, incorpo-
rating the appropriate diffusion terms into our current algo-
rithms is straightforward, and would be a fruitful direction for
future work.

Like the HD equations, the MHD equations are a coupled
set of nonlinear hyperbolic PDEs. We have already described
many of the necessary numerical algorithms for generating so-
Iutions to these equations in Paper I. In the next section, we
describe the additions and modifications to the algorithms we
have implemented in the ZEUS-2D code to evolve the mag-
netic field components.

3. THE MHD ALGORITHMS IN ZEUS-2D

There are two principal difficulties associated with the nu-
merical solution of the MHD equations as compared to the
HD equations. The first difficulty is that Maxwell’s equations
require the magnetic field satisfy the divergence-free constraint
(V- B = 0) at all times. Unless this constraint is built into the
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numerical evolution equations, the numerical errors asso-
ciated with evolving the field components will, in general, not
satisfy the divergence-free constraint. Accumulation of these
errors can ultimately lead to gross violation of the constraint
equation, and this will force termination of the calculation.
The reader is referred to Evans & Hawley (1988, hereafter EH)
for an informative discussion of this issue; we summarize some
of the important points below. The second difficulty is that
MHD flows possess entirely new families of wave modes in
comparison to HD flows. This not only results in a wealth of
new physical effects, but also has implications for the numeri-
cal algorithms. One must ensure that the numerical algorithms
provide for the stable and accurate propagation of all possible
MHD waves.

In order to circumvent the first difficulty, the need to de-
velop algorithms which evolve divergence-free fields has long
been recognized. Until recently, the traditional approach has
been to evolve the magnetic vector potential (defined via B =
V X A) rather than the field components themselves. One
then derives the field components from numerical derivatives
of the vector potential whenever needed. Provided that the
finite-difference representations of the divergence and curl op-
erators are constructed properly, the discrete representation of
the vector identity V-V X 4 = 0 will be satisfied exactly. In
two dimensions, the evolution equations for the vector poten-
tial reduce to an advection equation for a single scalar. This
approach was the method implemented in the original ZEUS
code for MHD simulations of axisymmetric jets (Clarke
1988).

The difficulty with evolving the vector potential rather than
the field components themselves is constructing an accurate
representation of the Lorentz force (47)"'(V X B) X B
which requires taking a second derivative of the vector poten-
tial. Clarke, Norman, & Burns (1989) have argued that in
order to achieve a first-order accurate representation of the
Lorentz forces, a third-order accurate scheme must be used for
evolving the vector potential (such as PPA). However, Chop-
tuik (1986) has emphasized that for smooth functions, taking
numerical derivatives does not necessarily reduce the order of
accuracy of the derivatives as compared to the corresponding
analytic derivative. Nonetheless, Clarke (1988) has demon-
strated unequivocally by means of numerical tests that in order
to achieve accurate representations of the current (first deriva-
tive of the field) in many advection problems, a higher order
scheme must be used. Even then, one encounters serious prob-
lems due to anomalous current (and force) reversals in the
vicinity of sharp features in the magnetic field such as shocks
and contact discontinuities. Such force reversals will couple
directly to the dynamics of the flow, and will produce spurious
accelerations and heating. Recently, EH have developed the
constrained transport (CT ) method which incorporates the di-
vergence-free constraint directly into the finite-differenced
form of the magnetic field evolution equations. Since the field
components themselves are evolved, accurate and smooth rep-
resentations of the current can be achieved without anomalous
reversals (since numerical second derivatives are not needed ),
while the method also guarantees that the constraint equation
V - B = ( will be satisfied to machine roundoff at all times. For
these reasons, we have chosen to implement the CT scheme in
ZEUS-2D.
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In addition to ensuring the algorithm can evolve divergence
free fields, we must also address the second difficulty posed by
the numerical solution of the MHD equations, namely devel-
oping a scheme which gives an accurate representation of all
MHD wave modes. One might assume that the same types of
upwind schemes used to evolve the HD variables might be
adopted to evolve the magnetic field components as well. How-
ever, MHD flows possess a family of incompressible transverse
wave modes, called Alfvén waves, which tightly couple the
evolution of the velocity and magnetic field components. HD
flows possess no analog to the Alfvén wave family. We have
found that if the same upwind schemes used to evolve the HD
variables are applied to the evolution of the MHD equations,
the resulting method has a large dispersion error for these
waves. This error is particularly evident in the evolution of
sharp, discontinuous features, or when smooth features inter-
act with a boundary. In such cases, the dispersion error creates
large-amplitude, short-wavelength oscillations which are
stable, but are neither damped nor diffused away. The only
suitable methods we have found which eliminates this error are
schemes which are upwind in the Alfvén wave characteristics
(the error can also be eliminated by schemes with a large in-
trinsic diffusion, however we consider this an unsuitable solu-
tion). One suitable method to achieve this is the method of
characteristics (MOC). While MHD codes based entirely on
the MOC have been developed (Lou, Rosner, & Ulmschneider
1987) and are therefore automatically upwind in all MHD
wave families, they sacrifice conservative form and the diver-
gence-free constraint, as well as the simplicity of finite-differ-
ence representations of the primitive MHD equations. Thus,
as described below, we do not solve the full MHD equations
with the MOC, but only the subset which describe the propaga-
tion of Alfvén waves as an intermediate step to compute time
advanced quantities for the evolution of the field components
themselves. In two-dimensional axisymmetric calculations,
the toroidal component of the magnetic field is divergence free
due to the assumed symmetry, i.e., dB4/d¢ = 0, thus only the
poloidal components need be evolved with a constraint pre-
serving formalism such as CT. (Hereafter, we identify the po-
loidal components of the field as those that lie in the plane of
the two-dimensional mesh, while the toroidal component is
orthogonal to the mesh). Thus, to evolve the toroidal field, we
use a straightforward algorithm based on the MOC, as de-
scribed in § 3.3, while to evolve the poloidal field component
we implement a form of the MOC within the CT formalism, a
technique which we refer to as MOC-CT.

We describe in detail the MHD algorithms implemented in
ZEUS-2D in the following subsections. We begin in § 3.1 with
the centering of the MHD variables. In § 3.2, we describe the
evolution of the poloidal field components using the new
MOC-CT scheme. Finally, in § 3.3 we describe the MOC
scheme for the evolution of the toroidal field components.

3.1. Centering of Variables

Before writing down the finite-difference equations used to
evolve the magnetic field, we must first decide on the spatial
centering of these variables on the staggered mesh. (The two-
dimensional mesh used in the ZEUS-2D code is described in
§ 4.1 in Paper I, we merely note here the mesh is labeled by the
coordinate vectors x, and x,, with the 3-direction taken to be
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orthogonal to the computational plane.) The correct centering
of the magnetic field components is a key aspect of any numer-
ical scheme. Since Alfvén waves couple the components of
velocity and magnetic field which are perpendicular to the di-
rection of propagation (e.g., v, and B, are coupled for waves
propagating in the 2-direction, and vice versa), it is natural to
center the magnetic components identically to the velocity
components. Thus, the 1-component of the magnetic field is
face centered in the 1-direction, the 2-component is face cen-
tered in the 2-direction, and the 3-component is zone centered
(see Fig. 1). With this centering, the poloidal field components
are normal to the faces of a control volume defined at zone
centers (as is used for the momenta). This centering is differ-
ent than that originally described in EH. The transformation
from the continuum variables in the differential equations to
the discrete variables used in the finite-difference equations is
then

B,(x;, x;) > Bl(xla;, x2b;) = Bl

iLjo
B,(x,, x;) > B2(x1b;, x2aj) =B2,;,
Bs(xy, x,) > B3(x1b;, x2b;) = B3, ;.

An important derived quantity in the MHD equations is the
electric current density vector j = V X B. With the above
centering of the magnetic field components, the poloidal com-
ponents of the current density are naturally centered at the
positions of the orthogonal components of the magnetic field
(so that j, is centered at the same position as B,, j, at the
position of B, ), while j, is centered at zone corners (see Fig. 1).

3.2. Evolving the Poloidal Field

In this section, we describe the algorithms for evolving the
poloidal components of the magnetic field implemented in the
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FiG. 1.—Centering of the magnetic field components (B,, B,, and B;)
current density components (j,, j,, and j3), and the 3-component of the
EMF used in the two-dimensional CT scheme implemented in the ZEUS-
2D code.
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ZEUS-2D code by focusing on three issues. In § 3.2.1 we sum-
marize the constraint preserving CT formalism, in § 3.2.2 we
describe our new MOC-CT scheme which evolves all poloidal
MHD wave families accurately, and in § 3.2.3 we describe how
the Lorentz force terms are differenced in the momentum
equation.

3.2.1. The CT Scheme

The fundamental concept of the CT scheme developed by
EH is the realization that the constraint equation is satisfied
identically by a numerical scheme which evolves the magnetic
flux in a conservative fashion. To achieve this, the differential
form of Faraday’s Law (eq. [4]) can be rewritten using Stoke’s
theorem in integral form,

%=f (v x B)-dl, (5)
ot as

where & is the magnetic flux piercing a surface .S bounded by
dS. Physically, equation (5) states that the rate of change of the
flux through a surface S is given by the path integral of the
electromotive force (EMF, defined via e = v X B) around the
edges of that surface. With the centering of the magnetic field
components used in ZEUS-2D (describedin § 3.1), the compo-
nents of the flux are centered at the faces of a control volume.
We can develop a finite difference representation of equation
(5) for the flux components as follows. The area of each inter-
face of the control volume is bounded by a closed contour
along each of its four edges. We center the components of the
EMF at the center of each edge, so that when projected onto
the two-dimensional grid, ¢; = v, B; — v3 B, is face centered in
the 2-direction (i.e., at the same position as B,), ¢, = V3B, —
v, By is face centered in the 1-direction (i.e., at the same posi-
tion as B,), and ¢; = v, B, — v, B, islocated at zone corners (see
Fig. 2). Then, assuming the components of the EMF are con-
stant along all edges, we can construct finite-difference approx-
imations to the components of equation (5) using the right-
handed rule '

(B17H — B17,)/ At = —2; ,AX2 — €3;,A%3
+ 62,"ij2 + €3i,j+lAX3
= +(e3; 41 — €3;;)AX3, (6)

(82741 — 827,)/ Al = +el,;Ax] — 3,0 ,A%3
- fli,ijl + 63,"ij3
= '—(63,‘4,1’1 - 63,’1)Ax3 . (7)

The arrows in Figure 2 denote the correct direction for the
contour integration resulting in equations (6) and (7). Note
that for two-dimensional calculations, the 1- and 2-compo-
nents of the EMF cancel from the evolution equations by sym-
metry.

By adding equations (6 ) and (7) together, we can calculate
the new total flux through the surfaces of the control volume.
Since the contribution from the EMF along each edge appears
once in each equation with opposite signs, all EMF terms will
cancel in the full sum for the total flux. Thus, we see that if the
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FIG. 2.—When the two-dimensional grid is expanded in the 3-direction
(plotted vertically in this figure), the closed contours around which the
EMEF is integrated to evolve the magnetic field components become evi-
dent. Arrows indicate the direction of the path integral around the edges.
Note the magnetic field components are shown pointing in the opposite
direction of the coordinate unit vectors.

old flux obeyed the constraint equation (i.e., f s®-dS=0by
Gauss’ Law) then the new flux will continue to do so. In other
words, the evolution equations (6) and (7) guarantee that
changes in the flux obey the divergence-free constraint. Nu-
merically, we can achieve global conservation by computing
the EMF over the whole grid once and for all, and using the
same values to update neighboring cells. Then, if one com-
putes the total flux piercing the computational domain by
summing the evolution equations (6) and (7) over all zones,
we will achieve conservation of flux to machine round-off
error. As pointed out by EH, this is exactly analogous to the
more familiar conservative differencing schemes for the HD
variables (such as mass density ), whereby one solves the inte-
gral form of the advection equations using fluxes computed
through each zone interface, and then uses that flux twice,
once when mass leaves a zone and once when it enters the
adjacent zone.

By substituting expressions for the magnetic fluxes in terms
of the control volume surface areas and magnetic field compo-
nents, we can rewrite equations (6) and (7) as evolution equa-
tions for the field components themselves. Since EH were mo-
tivated by general relativistic MHD simulations, they derived
covariant expressions for the evolution equations using the
magnetic vector density. These equations contain no reference
to the metric tensor describing the particular coordinate sys-
tem being used, and are therefore valid in arbitrary coordinate
systems. In this work, however, we will only be interested in
nonrelativistic MHD for which the components of the metric
tensor are known analytically. It is therefore more convenient
for usto use covariant evolution equations in which the compo-
nents of the metric tensor appear explicitly, rather than trans-
forming the variables to use the magnetic vector density. Using
the coordinate independent differencing formalism described
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in Paper I, covariant expressions for the flux components and
control volume edge lengths are

®, = hyhydx,dx; B, , (8)
®2 = h1h3dx1dX3Bz N (9)
Ax3 = h3dX3 . (10)

Substituting these expressions into equation (6) and (7) and
differencing yields

BI3f' = [B1};82a}g314] g32b}dx2a]
+ Ai(g31ar 2 gR2a P
—_ g3la;x+l/2g32a;g+l/2€3z;|/2)]/

R0+ g3107 " g320; dx2ay! (1)

B2} = [B2,8315]g32a}dx 1]
~ An(g31ar 2 g32ay 23 2
— g31a7+1/2g32a7+1/2632}.1/2)]/
g31b1g32a5 dxlart . (12)

By using the metric scale factor variables g, g3, and g3, (egs.
[15]-[20] in Paper I) we have conformed to the covariant
differencing formalism described in § 4.2 of Paper 1. Note the
use of the metric scale factor variables at both the old and the
new time levels to account for compression and expansion of
the grid (if it is moving ), and that the terms involving the EMF
are time centered (measured at n + 1/2). Equations (11) and
(12) are the finite-difference expressions solved in ZEUS-2D
to evolve the poloidal field components, all that remains to be
specified are the EMFs.

One final comment regarding the CT scheme as a whole is
that it guarantees that an initially divergence-free field will
remain divergence free during evolution. However, one must
take care that the initial field is in fact divergence-free! In prac-
tice, we find that using the vector potential to initialize a field
configuration (as suggested by EH) is a convenient way of
achieving this. Perhaps more importantly, one must also en-
sure that the boundary conditions applied to the field compo-
nents do not introduce divergence into the computational do-
main, a point also emphasized by EH. In this work, this is
achieved by applying boundary conditions to the EMF, and
evolving the field components in the ghost zones. The various
types of boundary conditions which can be applied to the
EMFs are given in § 3.4.

3.2.2. Computing the EMF

In principle, one could use any method to compute the EMF
within the CT formalism and still maintain divergence-free
fields. In practice, however, a method must be used which
satisfies numerical stability requirements, and gives an accu-
rate description of the MHD flow. The stability requirements
arise because of the mathematical nature of the transport oper-
ators in the induction equation which give rise to an EMF due
to fluid advection. EH described a stable method for comput-
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ing the EMF for advection problems. Schematically, the
method can be written as

632}'1/2 = 1_,lzzjnﬂ/2legjejn+l/2 _ UZ:j"+1/2Blifj"+1/2 , (13)

where v};**"/? and B};"*'/? represent time centered values for
these variables at the same spatial location on the grid as the
EMF (zone corners). Note that some sort of space and time
interpolation is needed to compute the time-centered compo-
nents of the velocity and magnetic field at zone corners from
the face centered values evolved in ZEUS-2D. EH used simple
arithmetic averaging of the velocity at the old time level to
compute the components of v*;"*'/? (i.e., the velocity is not
time-centered ), and upstream interpolation using the van Leer
algorithm described in Paper I to compute the components of
B¥;"*!/2_ Although this formulation for computing the EMF
was found to be entirely adequate the advection test problems
given in EH, we have found that when used for fully dynamical
problems, it is unable to propagate shear Alfvén waves along
poloidal field lines accurately, as will be demonstrated by the
results of some of our test problems (see § 4.6). As mentioned
previously, this has motivated the development of our MOC-
CT scheme described here.

The fundamental component of the MOC-CT scheme is to
use the MOC to compute time advanced values for both the
velocity and magnetic field components in order to compute
the EMF. An important simplification of this MOC step is that
only the Alfvén wave characteristics are used to compute the
time-advanced values; the compressive (fast and slow) MHD
wave characteristics are excluded. This simplification results
from the fact that the compressive wave families are tightly
coupled thermodynamically to the HD. Thus, the numerical
algorithms used to evolve the HD (which is used to evolve the
compressive HD [sound] waves) will also evolve the compres-
sive MHD waves accurately, so that the full MHD algorithm in
ZEUS-2D can account for all MHD wave families present in
multidimensional flows. This point will be demonstrated
through an extensive series of test problems presented in § 4.

The MOC differential equations used to compute the time
advanced values of the velocity and magnetic field needed for
the EMF (i.e., v*"*1/2 and B*"*1/2) can be easily derived by
considering the MHD equations for a one-dimensional, mov-
ing, incompressible fluid. With these restrictions, the full set of
MHD equations reduce simply to

o B, OB 9
E - —; dx dx (vxv) s (14)
oB a 9

Tt_ xa_x_a(va), (15)

where all variables are a function of x only, we choose the units
of B such that yy = 1, and we denote the components of veloc-
ity and magnetic field in the x-direction by v, and B,, respec-
tively. Note that the divergence-free constraint in one dimen-
sion (which implies dB,/dx = 0) and the incompressibility
condition in one dimension (which implies dv,/dx = 0) has
allowed us to simplify the induction equation (15) and the
Lorentz force terms in the equation of motion ( 14) consider-

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1992ApJS...80..791S

JS. 280 TS

R

rTI92A

796 STONE & NORMAN

ably. It is straightforward to show that the coupling in the lead-
ing terms in equations (14) and (15) describe pure (trans-
verse) Alfvén waves propagating in the x-direction, while the
second terms in these equations accounts for fluid advection.
Thus, these equations only describe the propagation of infor-
mation in a moving fluid via Alfvén waves and do not admit
any compressive wave modes. We can rewrite the coupled
equations ( 14) and (15) in characteristic form by multiplying
equation (15) by p~!/? and then adding and subtracting them,
yielding

Dv 1 DB

Dt_'_pl/2 Dt (16)
The minus sign denotes the characteristic equation along the
forward facing characteristic C*, while the plus sign denotes
the characteristic equation along the backward facing charac-
teristic C~. The comoving derivative used in equation (16) is
defined as

D/Dt = 3/dt + (v, £ B./p'/?)d/0x (17)

where the plus (minus) sign is taken for the comoving deriva-
tive along the C* (C~) characteristic. Note that the coefficient
of the second term in the comoving derivative is just the Alfvén
velocity in the moving fluid, v, + v,. Physically, equations
(16) and (17) state that along characteristics, which are
straight lines in spacetime with slopes of v, = v,, the changesin
the velocity and magnetic field components in each direction
are not independent.

The finite-difference equations used to solve the characteris-
tic equations (16) and (17) can be generated as follows. Con-
sider the one-dimensional spacetime diagram centered at the
positions of the EMF, where we require the partially updated
values v¥'"*1/2and B¥"*+'/2? (see Fig. 3). Note that by construc-
tion, the partially advanced quantities are centered in space
between the currently known velocities and magnetic field at
time level #. On our two-dimensional, staggered mesh this
implies the v¥-"*'/2 and B*-"*'/2 are located at cell corners, the
same as the EMF (see Fig. 1). Extrapolating back in time along
the characteristics C* and C~ to time level n, where values for
all variables are known, defines the “footpoints.” By using up-
wind interpolation at time level # (e.g., donor cell, van Leer or
PPA), we can compute the time-averaged values for these vari-
ables in each domain of dependence, i.e., v;>" and B;*" on the
C~ characteristic, and v;>" and B*” on the C™ characteristic.
For both the velocities and the magnetic fields the characteris-
tic speed v, + v, are used to compute upwind values. Given
values for the variables at the footpoints, we difference the
characteristic equations along C* or C~ as

(v;‘:,nﬂ/z _ v;y-,n) _ (B;‘:,n+1/2 — B}-,n)/(p;}-)l/Z =0 s (18)
(0112 — opm) o+ (BEm2 — Brn) (o) 2 = 0. (19)

In order to approximately time center the denominator of the
second term in each of these equations, we set p/ = p2, and
p7 = p?. These two linear equations for the two unknowns
vF"+1/2 and B¥"*1/2 are then solved directly.

For our multidimensional calculations, we solve the charac-
teristic equations in a directionally split fashion in order to
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FIG. 3.—One-dimensional spacetime diagram showing the locations of
the forward and backward facing characteristics C* and C~, which are
used to compute the partially advanced quantities v* and B* with the
method of characteristics. In space v* and B* are centered at zone inter-
faces, in time they are the half-time step n + 1 /2. The time-averaged values
for the variables over the domain of dependence for each footpoint of the
characteristics are computed using upwind interpolation between quanti-
ties at time level n, located at zone centers.

construct time-advanced values for all of the components of
velocity and magnetic field (v*"*!/2 and B*"*'/2). We pro-
ceed by solving at every grid point the pair of characteristic
equations which represent the propagation of Alfvén waves in
the 2-direction, namely

Dv, _ | DB,
R I (20)

where
D/Dt =98/t + (v, = By/p'?)/ h,0/0x, . (21)

Equation (20) is differenced in the manner of equations (18)-
(19), except the characteristic speeds in the 2-direction used to
upwind the variables at the footpoints are v, + B,/p'/%. The
solution of these difference equations then yields v1*"*!/2
and B1;*"*'/2 at every cell corner. We then solve, at every grid
point, a similar pair of characteristic equations which repre-
sent the propagation of Alfvén waves in the 1-direction,
namely

Dv, | DB,
——t- -+ p—l/—i Dt = O . (22)
where
D/Dt =9/t + (v, = B;/p'?)d/0x, . (23)

Equation (22) is again differenced in the manner of equations
(18)-(19), except the characteristic speeds in the 1-direction
used to upwind the variables at the footpoints are v, = B, /p /2.
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The solution of these difference equations then yields v2*;"+!/2
and B2}*;"*'/* at every cell corner. Note that, due to the center-
ing of the velocity and magnetic field components at the same
position on the mesh, we can naturally apply the MOC to the
coupled pairs in each direction, and the resulting updated val-
ues will be known at cell corners in both cases. In fact, it is for
this reason that we chose a different centering than originally
described in EH. We have found that, for grids in which the
velocity and magnetic field components are not cospatial, aver-
aging of one to the position of the other interferes with the
tracking of Alfvén waves with the characteristic method, and
does not produce a suitable algorithm.

Once both components of the variables at the advanced time
is known at every cell corner, we use them to compute the
EMF via equation ( 13) and proceed with the CT update. Note
that this direction-splitting of the scheme can be naturally ex-
tended to three-dimensional calculations (Clarke, Stone, &
Norman 1990). Of course, directionally splitting the equations
in this fashion is only an approximation to the true characteris-
tics problem in muitidimensions. A more accurate result
would probably be achieved by interpolating along the princi-
ple axes of the characteristic cone in multidimensions, rather
than along the components along coordinate grid lines as we
have done here. One problem with implementing the former
method on a staggered mesh is that the precise direction of the
magnetic field lines (and thus characteristic) is not known at a
specific position in space. Averaging of field components to the
same position to compute the direction of the field there will
probably introduce diffusion into the result, much in the same
way that our current directional splitting is likely to do. Which
formalism is the most accurate is a subject for future numerical
investigations. To demonstrate the accuracy of our present for-
mulation, we present the results of an extensive series of test
problems in § 4.

3.2.3. Differencing the Lorentz Force Terms

For the accurate evolution of the Alfvén waves it is not suffi-
cient to use only the MOC to compuite partially updated vari-
ables v*"*!/2 and B*"*'/2 for the EMF and then update the
magnetic field components using CT. We must also update the
Lorentz force term in the equations of motion (2) using par-
tially updated values of the magnetic field resulting from an
MOC calculation similar to that used in computing the EMF.

Expanding the vector operators in the equation of motion
(2), we can write the Lorentz force terms as

o _ BB _ B 9.0 B3
3t phl axz ph2 axl (hZBZ) ph3 axl (h3BS) 5 (24)
@, B 8, BB _ B 3

ot ph, ox, (haBy) phy 0x,  phyhy Ox, (hsBs) - (25)

We identify the first term in these equations as those which,
when coupled to the appropriate components of the induction
equation, describe the propagation of Alfvén waves, while the
latter terms represent changes in momentum due to gradients
of magnetic pressure. We can split the update for the Lorentz
force terms into two parts. The first partial update is performed
in the source step using the finite-difference equations
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vifie—vly;, (B2
At (di-y;+ d,j)
% g2bi(32i,j + Bzi,j+l) - gai—l(Bzi—l,j + Bzi—l,j+l)
g2a;dx1b;
_ (B3i—l,j + B3U) g31b,B3,’J - g3lbi—lB3i—l,j (26)
(dioy;+ d;)) g3la;dx1b; ’
v2pre -2t (Bl
At (dioy;+ d;;)
% (Bl;; + Bl ;) — (Bl + Bliyy )
82b;dx2b;
_ (B3i,j—l + B3,’]) g32bjB3t,_] - g32bi—lB3i,j~l (27)
(dij-r + d;)) 82b;832a;dx2b; ’

(Bl;;)=(Bl;;+ Bl ;+ Bl;;, + Bl;y, ;,)/4, (28)
(B2;y = (B2;;+ B2, ;;, + B2;_, ; + B2;_; ;,,)/4. (29)

These terms, which account for gradients of magnetic pressure,
are added in “Substep 1> of the source step. (We refer the
reader to § 4.3 of Paper I for a description of the “source step”
in the ZEUS-2D code). Note these terms do not use time ad-
vanced values of the magnetic field components, but like the
rest of the source step use only the currently stored valués of
variables on the right-hand side.

The second partial update for the Lorentz force terms that
result in Alfvén wave motion is added when the MOC-CT
evolution is performed. The finite-difference equations for this
update utilize the time advanced variables B1;7*'/? and
B2;7*1/2 computed from a MOC solution of the directionally
split characteristic equations in a frame comoving with the
fluid, so that

olff' — L7yt 2(B2, 5 (BIA/?— BI? (30)
At (dioy;+ d;j g2a;dx2a; ’
w2t —v2pre  2(Bl;)
At (di—l,j + di,j)
% 82a;,, B2 ]? — g2a, B2/ (31)
22b;dxla; ’

Note that the time advanced values B;"*'/2 and B;"*'/? used
here are not the same as those used to compute the EMF. The
reason for this difference is related to the fact that the CT
formalism is not an operator split scheme. Thus, the coupled
momentum and induction equations used to generate the
characteristic equations (i.e., egs. [14]-[15]) in the MOC-CT
scheme describe the propagation of Alfvén waves in an Euler-
ian frame of reference. However, since the momentum equa-
tion is operator split, the Lorentz force term is effectively ap-
plied in a Lagrangean frame of reference. Thus, the coupled
momentum and induction equations used to generate the
characteristic equations for the Lorentz force describe the prop-
agation of Alfvén waves in the comoving frame (i.e., they are

~ identical to egs. (14)-(15) but the second term on the right-
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hand side is dropped). The characteristic equations used to
compute B;"*!/2 and B;"*'/? used in equations (30) and (31)
are identical to equations (20) and (22), respectively, but now
the comoving derivative used in these equations are

D/Dt =29/t + (B,/p""*)/ h,8/0x, , (32)
for Alfvén waves propagating in the 2-direction (eq.[20]), and
D/Dt =4/dt = (B,/p'/?)d/dx, , (33)

for Alfvén waves propagating in the 1-direction (eq. [22]). To
compute the B;"*'/2 and B;"*'/? needed in equations (30) and
(31), we solve the same finite-difference equations as before
(egs. [18]1-[19]) but the variables at the footpoints are up-
winded using the characteristic speeds +B,/p!/? for waves
propagating in the 2-direction and + B, / p'/? for waves propa-
gating in the 1-direction. Note that v} 172 and v;"*/2, which
also result from solving equations (18) and (19), are not
needed here and are discarded.

3.3. Evolving the Toroidal Field

For two-dimensional simulations, the toroidal component
of the magnetic field will satisfy the constraint equation at all
times by symmetry. Thus, we do not need to use a constraint
preserving algorithm such as CT for evolving the toroidal field.
However, specialized algorithms are still required to propagate
torsional Alfvén waves accurately, as described below. We
have achieved self-consistency in our algorithms in that, for
stationary flows, the MOC-CT scheme described above re-
duces to the algorithm used here.

For two-dimensional calculations, the 3-components of the
equation of motion and induction equation can be written in
full as

w1

o h2h3 ox l(hzhsvlvs) hzh 6 2(" 30,03)
B,
+ p_h3 X, (h3 3) + = h2h3 a X, (h383) 5 (34)
B, 1 d
o hz x, (hzles) ox, —— (v,B5)

i) a
+ Byhy 5)71 (vs3/h3) + Byhs/ hy E (vs/hs) . (35)

The leading two terms in each of these equations are transport
terms, accounting for advection of v; or B; respectively due to
fluid motion in each direction, while the other two terms are
source terms. Following the operator splitting formalism de-
scribed in Paper I, we split the update of v; and B; due to
source and transport terms into two separate steps. In the
source step, we solve finite-difference approximations to

éﬁ Bl B,

ot phs 0x (h3Bs) + phohs 3 (h3B;),  (36)
9By _ p, 9 (vs\, Bihy 8 (v,

= = Bihs Bxl(h3)+ . 6x2(h3) (37)

Vol. 80

while in the transport step we use the integral forms of the
equations to account for advection

if ph3v3dV= _f ph3v3(v - v‘)' dS, (38)
dtJy av

d
EfAB3dA——faAB3(v—vg)-dl. (39)

Note that in equation (39) the magnetic field is integrated over
the zone area rather than volume, since it is more natural to
transport magnetic flux.

The source terms in equations (36 )—(37) are responsible for
torsional Alfvén wave motion. We have found that straightfor-
ward finite-differencing of these source terms does not yield an
accurate algorithm for evolving torsional Alfvén waves which
contain discontinuities. We have tested many numerical algo-
rithms for evolving equations (36)—(37). Of the algorithms
we have tested, we have found that the only suitable ones are
those which are either very diffusive (such as Lax-Friedrichs,
or Lax-Wendroff), or those which use upwind differencing
along the characteristics of the torsional Alfvén waves. Since
the latter scheme can provide for a much less diffusive algo-
rithm, we have chosen to implement it in ZEUS-2D. Our for-
malism is to use the MOC to estimate partially updated values
for v; and B; at the half-time step, which can then be used in
finite difference forms of equations (36) and (37) to evolve the
variables. We do not use the MOC to actually evolve the vari-
ables themselves, but merely as an intermediary step.

The characteristic equations used to compute the partially
updated values for v; and B; can be derived as follows. We
begin by rewriting equations (36) and (37) in a more compact
form

B (vs\_(1\[B &

9 d (vs), B, 9 (15
3 (haBy) = () [B, 2 (h3)+ 2l @

Then, subtracting (adding) these equations leads to the char-
acteristic equation along the forward (backward) characteris-
tic C* (C"),

D 1\ 1
Dz(;:) (h_s) ~1/2 Dt(h3B3) (42)

In equation (42), the comoving derivatives along C* and C~
are defined by equation (32) (or eq. [33]) for waves propagat-
ing in the 2-direction (or 1-direction), since as described previ-
ously the source step is applied in a Lagrangean frame of refer-
ence. These equations are similar to those used for Alfvén
waves in the poloidal directions (eqgs. [20] and [22]). Physi-
cally, they state that along characteristics of the wave motion,
changes in the fundamental quantities of angular velocity and
magnetic flux are related via equation (42).

We can difference the characteristic equations in a similar
manner as was described in § 3.2.2, except now we use the
rotational velocity, @ = v;/h;, and the magnetic flux, & =
hs B, as the dependent variables. Differencing along the for-

d
o (hng)] . (40)
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ward and backward characteristics in one dimension leads to
the two coupled equations

(@F "2 = Q) = (@F"2 — 7/ (Bp' )T =0, (43)
(QF™1/2 = Q7) + (®F72 = @7 (K )T = 0, (44)

where the Q" and ®;" are the upwind interpolated values at
the old time level at the footpoints of the C~ characteristic,
Q}" and ®;" are the upwind interpolated values at the old
time level at the footpoints of the C* characteristic, while the
Q¥-"*1/2 and @*"*1/2 are the advanced time values located at
zone interfaces (as in Fig. 3). The denominator of the second
term in each of these equations is time centered by choosing
values for A; and p which are appropriate to the midpoint
of each characteristic. The two coupled linear equations
(43)-(44) can then be solved directly yielding Q*-"*'/2 and
®*n*1/2_ These time advanced interface values are then used
in a finite difference update of the actual evolution equations
(36)-(37).

For our two-dimensional simulations, we use a directionally
split algorithm, i.e., we first update v; and B; due to torsional
Alfvén wave motion in the 1-direction, followed by an identi-
cal update in the 2-direction. We proceed by solving at every
grid point equations (43) and (44) for Q*;"*'/? and ®};"*!/2
by computing the upwind variables at the footpoints from the
characteristic speeds + B, /p'/2. These partially updated values
are used in the 1-direction evolution equations

v3,’~f}-“’ - v3;jj _ (Bl,;j + Bl ;)
At 2g31b,d,dx1a,

(@EV2 — @F17%) , (45)

B377¢ — B3],

At

_ (Bl + Bl,,, )g31b,
2dxla;

(R = 0™ . (46)

We then repeat this process for Alfvén waves in the 2-direction,
by solving at every gridpoint equations (43) and (44) for
Q**1/2 and $F;"*'/? by computing the upwind variables at
the footpoints from the characteristic speeds = B,/p!/2. These
partially updated values are used in the 2-direction evolution
equations
032}" - v3§j+!~"
At
(Bt B%)
2832b;d, ;g2bdx2a;

(Q:f-’:—rllz - (I):f"*-llz) ) (47)

B3 — B3t
l,l l,l

At

_ (B2, + B2, ;,,)832b;
282b;dx2a;

(412 — Qxme12) . (48)

Again, we expect this directional splitting to lead to diffusion
of the Alfvén wave across field lines in the downwind direc-
tion, but for staggered meshes this diffusion is probably un-
avoidable to some degree. Whether a more sophisticated algo-
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rithm can reduce the diffusion is a subject for future numerical
testing, however such development should not change the ba-
sic premise on which the MOC update is based. Note that the
MOC algorithm described in this section is appropriate only
for 27 -dimensional simulations. In three dimensions, the full
MOC-CT scheme must be used to evolve all three components
of the field.

Once the MOC update of the source terms is completed, we
can advect of these quantities. The rotational velocity is ad-
vected like a zone centered scalar, and this update, including
the finite difference equations, has already been described in
Paper 1. For the toroidal component of the magnetic field, B,
we advect the magnetic flux rather than the field itself. Thus,
we update equation (39) using a directionally split algorithm,
by first advecting the magnetic flux in the 1-direction using

Fl= M (B3/d)}, g2art'?, (49)

(B3,’-j}"g2b,'-’“dxla,'»‘“ - B32jg2b;'dXIG?)/At
= _(9'-}4-1,1'_ 7| (50)

L1170
where (B3/d)}; ; represents the face centered and upwinded
value resulting from one of the three interpolation algorithms
in ZEUS-2D (donor cell, van Leer, or PPA). We then advect
the magnetic flux in the 2-direction using

F2= M2(B3/d)}:;, (51)

(B3 g2brdx2a’ — B3},g2brdx2a%)/ At
= _(g'?,jﬂ -7 (52)

L]/’ "
Note that by using the mass flux variables M} ; and M?; de-
fined by egs. (55)-(56) in Paper I, and interpolating on B;/p
rather than B; itself, we have used consistent transport to try to
minimize the diffusion of the toroidal magnetic field relative to
the mass, as required by flux-freezing.

3.4. Boundary Conditions

As stated in § 3.2.1, the CT scheme guarantees a divergence-
free field only if the initial field is divergence-free, and that no
monopoles are introduced through the boundary conditions.
In general, divergence-free boundary conditions are nontrivial
to construct. Thus, in ZEUS-2D we have chosen not to apply
boundary conditions to the field components themselves, but
to the EMFs instead. We then update the field components in
the ghost zones using the actual difference equations. Since the
EMEF is corner centered, the two rows of ghost zones in which
we specify the EMF lie beyond the boundary, i.e., at i = iiml
and i = iim?2 for the inner i boundary, i = iop2 and i = iop3 for
the outer i boundary (see Fig. 1 of Paper I), and similarly for
the inner and outer j boundaries. Values for the EMF at i = ii
and i = iop1 (orj = ji and j = jop1) are computed from the
difference equations. For the CT algorithms, we have imple-
mented all of the same types of boundary conditions for the
EMFs that are used for the HD variables described in Paper 1.
Although in ZEUS-2D the only nonvanishing component of
the EMF vector is the 3-component (which is always tangen-
tial to the boundaries), we cannot use the boundary conditions
applied for the HD for tangential vectors directly to the EMF.
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Instead, since the EMF is formed by the product of two more
fundamental variables (the velocity and the magnetic field),
we must examine the consequences of the boundary condition
on these variables and their effect on the EMF vector. Thus,
the appropriate boundary conditions to be used are the follow-
ing:

1. Reflecting Boundary Condition.—The normal compo-
nents of velocity and magnetic field are reflected, while the
tangential components are continuous. This implies the EMF
in the ghost zones are equal to the negative of the EMF in the
equivalent active zones.

2. Inflow Boundary Condition—The EMF in the ghost
zones are set to some predetermined value, which may be al-
lowed to vary in time.

3. Outflow Boundary Condition.—The EMF in each ghost
zone are set equal to the EMF in the first active zone.

4. Periodic Boundary Condition.—The EMF in the ghost
zones are set equal to the EMF in the corresponding active
zones on the opposite side of the grid.

In addition to these boundary conditions, we have also im-
plemented a condition in which velocity is reflected, while the
normal component of the magnetic field is continuous and the
tangential component is reflected. This condition is designed
for symmetry planes (such as equatorial symmetry).

For the unconstrained toroidal magnetic field components,
we can apply boundary conditions directly. Thus, we use the
same HD boundary conditions with one important exception.
For outflow boundaries, perfectly transparent boundary con-
ditions for outgoing Alfvén waves can be achieved by remov-
ing the incoming characteristic from the evolution equation at
the boundary (Thompson 1987; Vanajakshi, Thompson, &
Black 1989). Numerically, this can be achieved by setting the
gradients of all quantities along the incoming characteristic to
zero. Thus, for outflow boundaries, we project the angular ve-
locity and toroidal magnetic field to achieve perfect transpar-
ent boundaries for outgoing torsional Alfvén waves. In addi-
tion, at an equatorial plane of symmetry the toroidal field
should be antireflected while the rotational velocity is merely
reflected. '

As with the HD boundary conditions, the MHD boundary
conditions can be applied independently for each ghost zone
on the mesh. The boundary conditions for each variable are
also implemented in a different subroutine, which can be
called from anywhere in the code, to allow for more modular
programming and the rapid modification of the numerical
boundary conditions.

3.5. Incorporating MHD into ZEUS-2D

Most of the MHD algorithms described in this chapter can
be built into self-contained modules. Modifying ZEUS-2D to
perform MHD calculations is then simply a matter of calling
these modules at the appropriate points in the program control
sequence. Figure 4 shows how the schematic flow chart of
ZEUS-2D, originally presented in Figure 7 of Paper I, is modi-
fied by the inclusion of the MHD algorithms. To account for
changes in the equation of motion due to Lorentz forces, we
must modify “Substep 1” of the source step to include the
finite-difference terms (egs. [26]-[29]). The MOC update of
the coupled toroidal component of the magnetic field and ve-
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F1G. 4.—Schematic flow chart of the ZEUS-2D code which diagrams
the changes required to add the magnetohydrodynamical algorithms to the
hydrodynamical algorithms. Compare this figure to Fig. 7, Paper 1.

locity is performed in a module called at the end of “Substep
17 of the source step, but before “Substep 2.” The MOC-CT
evolution of the poloidal field components (eqgs. [11]-[12]) is
performed at the start of the transport step. The partially up-
dated MOC magnetic field values B;"*'/2 and B;"*'/2 located
at cell corners are used to update velocities according to equa-
tions (30) and (31). The transport module must also be modi-
fied to incorporate the advection terms for B; using equations
(49)-(52). An additional important modification is the inclu-
sion of MHD wave speeds in the explicit CFL stability crite-
rion (Paper I). For MHD simulations, the CFL condition
must be modified so that

At < min (Ax)/(|u] + C)), (53)

where u is the local fluid velocity and Cyis the fast magneto-
sonic speed (C% = v + C2), where v, and C, are the Alfvén
and sound speeds, respectively). Thus, since C;> C,, the HD
CFL condition may not be a sufficient stability criterion for
strong fields. We replace the limiting time step 6¢,, defined by
equation (75) in Paper I, by the above for MHD simulations.
Finally, we must of course modify the data output and graph-
ics routines to plot the new variables.

As described in Paper I, we use the precompiler CPP for
source code management and to control the compilation steps
of ZEUS-2D. All of the above changes, including the inclusion
of the appropriate modules, are controlled by conditional
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compilation macros, which include or suppress references to
the MHD variables and subroutines. This allows an optimized
version of the code to be generated for both HD and MHD
simulations.

4. THE MAGNETOHYDRODYNAMIC TESTS

The MHD algorithms in the ZEUS-2D code are not simply a
new implementation of old methods, but instead incorporate
some entirely new numerical methods. Performing an exten-
sive series of tests for these algorithms is therefore even more
important than for the HD algorithms. However, unlike HD
codes, the development and application of MHD codes for
problems in astrophysics is a relatively new area of research. In
this work, therefore, we have assembled a new collection of test
problems that includes problems of various complexity, from
one-dimensional advection problems to full two-dimensional
simulations. Indeed, for some of these latter tests, the distinc-
tion between test problem and application becomes vague. We
describe the results obtained with the ZEUS-2D code for these
test problems below. In addition, the setup and execution of
each of the test problems is described in greater detail in Stone
et al. (1992) so that other researchers can use this test suite to
calibrate other codes.

4.1. Cartesian Advection Tests

The simplest test we have performed is the one-dimensional
advection of a square pulse of transverse magnetic field (a dou-
ble current sheet), a test which was originally described by EH.
Like the HD advection tests (see § 5.1 of Paper I), the problem
is constructed by ignoring the source terms in the dynamical
equations and assuming a stationary velocity field. However,
since the CT scheme does not operator split the induction
equation, but uses the EMF to update the magnetic fluxes due
to both the transport and source terms all at once, we must also
ensure that the parallel component of the magnetic field is zero
to prevent the generation of Alfvén waves. Initially, the pulse is
50 zones wide and centered at x = 30, and the test is stopped
when the pulse has been advected a distance of 5 times its
width. Figure 5 gives the results of advecting a pulse of B, in the
1-direction using three advection algorithms: van Leer, PPA,
and PPA with the steepener (identical results are obtained by
advecting a pulse of B, in the 2-direction ). If we compare these
results to those for the HD advection tests (Fig. 8 in PaperI),
we find exact agreement point for point between the two. Of
the three schemes tested here, we find the van Leer scheme is
the most diffusive (with discontinuities kept to about 14 zones
wide ), while PPA with the steepener is the best ( discontinuities
are kept to only two zones wide ). These results are also compa-
rable to those given by EH.

We also plot in Figure 5 the 3-component of the electric
current density for each advection method. Analytically, the
current density should be a delta function located at the pulse
edges. However, the diffusivity inherent in each scheme gives
the peaks finite width. As we increase the order of the advec-
tion scheme, from van Leer to PPA with the steepener, the
peaks become narrower and higher as expected. The main sig-
nificance of the numerical results for the current densities, how-
ever, are that they show no anomalous sign reversals. As dem-
onstrated by EH, MHD algorithms based on evolving the
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vector potential can produce nonmonotonic currents, which
will couple directly to the dynamics through the Lorentz force
term and can produce results of unknown reliability. The real
advantage of the CT scheme over vector potential methods is
that one need not take a second derivative to obtain the
currents.

We have also performed a one-dimensional Cartesian test
for a square pulse of the 3-component of the magnetic field in
both directions. Once again, the results are identical point for
point with the HD and CT Cartesian advection tests.

4.2. MHD Riemann Problem

We can increase the complexity of our tests with a one-di-
mensional dynamical problem which tests both the transport
and source terms. We have found the MHD analog of the Sod
shock tube problem, described by Brio & Wu (1988, hereafter
BW) is an excellent test. Unlike the HD. case, however, the
MHD Riemann problem possesses no known analytic solu-
tion. Part of the difficulty in solving the MHD equations ana-
lytically arises because they are nonconvex (unlike the Euler
equations which are convex), a point first proven by BW.
These authors give an excellent discussion of the mathematical
significance of the nonconvexity of the MHD equations. Physi-
cally, however, this nonconvexity means that different waves
of the same family can have the same propagation velocity.
Thus, in MHD flows, one can have compound waves, consist-
ing of a rarefaction wave attached to a shock of the same family
(e.g., a slow rarefaction wave attached to a slow shock wave,
etc.). This behavior is markedly differently from HD flows,
and furthermore it disproves the usual belief that magneto-
sonic waves are just like sound waves in the Euler equations.

Like the HD Sod shock tube problem, the MHD Riemann
problem features two initially discontinuous states that inter-
act. BW choose a v = 2.0 gas and left and right states consisting
of p;= 1.0, p; = 1.0, (B,);= 0.75 and (B,),= 1.0 and p, = 0.1,
p, = 0.125, (B,), = 0.75, (B,), = —1.0. The problem is initia-
lized on a domain of x € (0, 800), using 800 zones. At ¢ = 0 the
discontinuity is located at x = 400. The problem isrun to ¢ =
80. The discontinuity is initially located at a cell interface.
Note that the choices for the dynamical variables are identical
to those in the Sod shock tube problem, except a magnetic field
which possesses a kink at the discontinuity is added. The angle
that the magnetic field lines make with the shock normal is
given by tan 6 = (0.75)71.

BW present numerical solutions to this problem using four
methods, Lax-Friedrichs, Lax-Wendroff, flux-corrected trans-
port, and a second-order upwind scheme designed for this
problem. Since there is no analytic solution, we will compare
our numerical results with those of BW for their second order
upwind scheme (given in their Fig. 2). Figure 6 shows the
ZEUS-2D results for every dependent variable in the problem
(density, pressure, B,, and v, and v,). Examination of the
these results reveals the complexity of the MHD Riemann
problem as compared to its HD counterpart. One can identify
the following components in the solution. The waves moving
to the left are a fast rarefaction fan and a slow compound wave
(consisting of a slow rarefaction attached to a slow shock),
while the waves moving to the right are a contact discontinu-
ity, a slow shock and a fast rarefaction fan. The appearance of
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the compound wave in the solution demonstrates the noncon-
vex nature of the MHD equations, as described above. A com-
parison of the numerical solution generated by ZEUS-2D with
the BW numerical result shows excellent qualitative agree-
ment with respect to the positions and widths of the various
features in the solution. The only serious discrepancy occurs at
the foot of the fast rarefaction fan propagating in each direc-
tion where the ZEUS-2D solution shows an anomalous under
or over shoot. We can attribute this to the fact that although we
have built a numerical scheme which is upwind in the Alfvén
wave characteristics, it is not upwind in the magnetosonic
characteristics. This situation is identical to the HD, where
overshoots can occur at rarefaction fans for sound waves. Con-
structing a scheme which is upwind in all the characteristics
(such as the BW method) removes this overshoot, but results
in a much more complex and slower algorithm. The ZEUS-2D
result is substantially better that the results for the Lax-Wen-
droff, Lax-Friedrichs, and flux corrected transport schemes pre-
sented in BW (their Figs. 3, 4, and 6, respectively). Thus, using
the relatively simple methods in ZEUS-2D, we find that we
can achieve results that are near those for a much more com-
plex, fully upwind algorithm.

4.3. The Weber-Davis Wind Solution

Another one dimensional dynamical test problem, origi-
nally suggested to us by J. Hawley, is the semi-analytic solution
for a magnetic stellar wind due to Weber & Davis (1967, hereaf-
ter WD). This problem was first studied in the context of mag-
netic braking of stellar rotation to account for the transition
along the main sequence from rapid to slow rotators around
the spectral type F5. The original WD models are one-dimen-
sional (valid only at the equatorial plane), but recently Sa-
kurai (1985) has outlined a method of obtaining the two-di-
mensional structure of these winds. However, since the
two-dimensional solutions are very difficult to obtain, we shall
concentrate on testing with the original one-dimensional WD
models.

The method of obtaining the WD solution for a magnetic
wind has been reviewed in detail by Sakurai (1985). By assum-
ing a steady, one-dimensional flow, the MHD equations are
reduced to a set of four algebraic equations expressing conser-
vation of mass, angular momentum, total energy and mag-
netic flux, combined with a polytropic equation of state and a
flux freezing condition that relates the radial and toroidal com-
ponents of the magnetic field and velocity. This set of equa-
tions can be reduced algebraically to the Bernoulli equation
which determines the density profile, namely

H(r,p)=E. (54)

Given a value for the parameter E (the total energy in the
wind), the density profile is then a level contour of the Ber-
noulli function H(r, p). The topology of the Bernoulli func-
tion is similar to that resulting for HD winds, except now the
solution plane contains three critical points where solution
curves can cross: the slow, Alfvén, and fast points. Physically
these critical points represent the positions in the flow where
the radial velocity equals the slow, Alfvén and fast wave
speeds, respectively. The Bernoulli function H(r, p),and there-

fore the WD wind solutions, are uniquely determined by three
parameters, vy, the exponent of the polytropic equation of
state, ©, the ratio of thermal to gravitational potential energy at
the Alfvén point, and w, the ratio of rotational to gravitational
potential energy at the Alfvén point. Given a set of these param-
eters, the only physically acceptable solution is the single level
curve which passes through all three critical points smoothly
with a monotonically decreasing density profile; all others vio-
late entropy considerations or zero pressure boundary condi-
tions at infinity. Since the Bernoulli function is nonlinear and
quite complicated, analytic solutions for this level curve are
not possible. Instead, numerical root finding methods must be
used to trace the proper solution through every radial point.
Great care must be taken to ensure the numerical scheme finds
the single physically correct root at all radial points, and does
not diverge onto unadmissible roots. This task is nontrivial,
especially at the critical points where the roots cross. We do not
give the details of our numerical technique for computing the
WD solution for a magnetic wind here, it is given in Stone et al.
(1992).

Once we have a WD wind solution, it can be used to test the
ZEUS-2D code in two ways. We can either (1) initialize the
WD solution over the entire computational domain and check
that ZEUS-2D can hold this solution stably, or (2) we can
introduce the WD solution as boundary conditions at the in-
ner radial boundary, with vacuum conditions everywhere else
on the grid, and check that ZEUS-2D can generate the correct
solution over the whole grid from these boundary values. We
have performed both kinds of tests with ZEUS-2D and found
identical results, provided that one waits long enough in the
latter case for all transients to die away (typically about 10
fluid crossing times are needed ). We present the results for two
different WD solutions below. These solutions are all gener-
ated using a strip of 100 radial zones in spherical polar geome-
try centered on 6 = 7/2. The evolution is stopped in each case
after several fluid crossing times, which should give any poten-
tial difficulties ample time to grow. We have checked that the
solutions at later times do not differ significantly from those
presented here.

The first test solution is for the values of the parameters
given by Sakurai (1985), namely v = 1.2,0 = 0.5 and w =
0.25. This solution is particularly attractive since with these
values for the parameters, all three critical points are well sepa-
rated in solution space. Figure 7 shows the solution for these
parameters in the domain r € (0.5, 3.0). The numerical solu-
tion (open circles) is plotted over the semi-analytic solution
(solid line) given by the root finding techniques described
above. The positions of the slow, Alfvén, and fast points are
denoted by S, A, and F on these curves,

The solution is characterized by monotonically decreasing
density, internal energy and radial and azimuthal magnetic
field. The rotational velocity peaks near the inner boundary
then decreases, while the radial velocity is steadily increasing.
Physically, the solution represents radial acceleration of the
wind via magnetic stresses. Note that while both the radial and
azimuthal magnetic field components are monotonically de-
creasing, they scale as B, oc r2and B, oc r™!, respectively, so
that the field is purely radial at the base of the wind (stellar
surface), and becomes increasingly azimuthal as it is swept
back by the rotating flow at larger radii. For all variables except
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the rotational velocity, the numerical solution follows the ana-
lytic solution very closely. The logarithm of the relative errors
for each variable, given in Figure 8, show that even for the v,
the relative errors are all less than 1% over the whole grid. Dips
in the errors are positions where the sign of the error changes.
For all variables, including the rotational velocity, the greatest
error occurs at the first few points near each boundary. We
assert that this results from the fact that the numerical solution
in the ghost zones is held fixed at the analytic values, while
finite-differencing errors causes the numerical solution in the
active zones to relax slightly away from the analytic solution
(to one that satisfies the finite-difference equations to trunca-
tion error). Thus, near the boundaries, the slope of numerical
solution gains significant error. This behavior can be traced in
the solution for the rotational velocity, where the numerical
solution undergoes a sharp dip at the inner boundary (where
the slope of the solution is incorrect ), and thereafter traces the
analytic solution very closely, although with the wrong ampli-
tude.

We have also tested the ZEUS-2D code with a WD solution
using the original set of parameters chosen by WD, namely y =
1.22,0 = 1.5, and w = 0.3. These values are appropriate for the
solar wind. They give very closely spaced Alfvén and fast
points, whereas the slow point is located deep in the solution,
at very small radii. Since at such small radii the slope of the
solution curve is very large at the slow critical point, obtaining
the analytic solution through this point via the root finding
techniques we are using becomes very difficult. As such, we
choose to test ZEUS-2D on the domain r € (0.2, 1.3), which
excludes the slow point which is located at r = 0.11. The
ZEUS-2D solution for this choice of parameters, plotted over
the analytic solution, is given in Figure 9, while Figure 10 gives
the errors in the solution. We again find excellent agreement
between the analytic and numerical solutions, except for the
rotational velocity. Even for this variable, the maximum error
is only about 1%. We again attribute this error to incorrect
slopes at the inner boundary, which in this case are more seri-
ous since the slopes are steeper at such small radii.

We emphasize that we have found identical results, even for
the errors, regardless of whether we initialize the solution on
the grid, or allow the solution to be generated via boundary
conditions. Furthermore, we find that the time-dependent
ZEUS-2D codes trace the correct solution through the critical
points, even if the lower boundary is located in the submagne-
tosonic portion of the wind. The code gives the correct accelera-
tion of the flow from submagnetosonic inflow to supermagne-
tosonic outflow. The WD wind solution is an excellent test of
the rotational terms in the dynamical equations, since the
wind is dominated by the interaction of the inertia of the rotat-
ing wind sweeping back the radial field lines. The test is also
very relevant to our intended application of ZEUS-2D to mag-
netically driven winds from disks and protostars. Moreover, by
performing time-dependent simulations (as a test problem),
we have also demonstrated the stability of the one-dimensional
wind solution!

Since the WD wind solution contains no discontinuities, it is
an excellent problem with which to perform convergence test-
ing. By convergence, we mean the rate at which the error in the
numerical solution as compared to the correct solution (given

either by an analytic solution, or an infinitely high-resolution
numerical result), decreases as a function of the number of
grid points. (This type of convergence has no relation to the
convergence rate of an iterative scheme for solving sets of lin-
ear or nonlinear equations.) Hawley (1989) has defined three
basic types of convergence testing.

1. Single-time step convergence testing.—The analytic so-
lution is initialized on the grid and evolved for one time step,
then the absolute error per unit time over the entire grid is
computed from

N ~
=]%,zl | X,(A1) - X(An)| [ At (55)

where X; is the numerical solution, X the analytic solution, N
the number of grid points, and At the time step. This is re-
peated for various resolutions. The change in the error with
different resolutions then gives the convergence rate (slope of
the log — log graph).

2. Extended evolution convergence testing.—An analytic
solution is initialized on the grid and evolved to a fixed time.
The error is computed as above (except we do not divide by
At), and the results from different resolutions give the conver-
gence rate.

3. Self-convergence testing.—The results from (2) may be
very poor since something (e.g., boundary conditions) may
prevent the code from converging to the analytic solution.
However, the code may still be converging, albeit to a numeri-
cal solution for the specified problem which is different from
the intended analytic solution. We can still measure the correct
convergence rate of the code by doing self-convergence testing.
The procedure is to run the code to some fixed time, for two
different resolutions, and compute the relative change in all
the variables between the two resolutions. A convergence rate
is computed by using a third resolution, and comparing the
change in the two errors over the three different resolutions.

The advantage of the first technique is that it is very cheap to
carry out, and can therefore be used for very high resolutions.
Moreover, in one time step, the effects of individual terms in
the equations can be singled out (e.g., the error in density must
be due exclusively to advection). By ignoring points near the
boundaries, errors generated by the boundary conditions can
also be eliminated for an explicit code. We have already used
the second technique to test the convergence rate of the advec-
tion algorithms in ZEUS-2D (see Paper I). The great advan-
tage of the third method is that it can be used for problems in
which the analytic boundary conditions are difficult to imple-
ment properly, or even for problems for which no analytic
solution exists at all.

We have used both the single-step and self-convergence test-
ing methods to measure the convergence rate of the whole
ZEUS-2D code on the one-dimensional WD problem
(whereas in Paper I we measured the convergence rate of the
advection algorithms alone). For both tests, we used the first
WD solution (withy = 1.2,0 = 0.5, w = 0.25) on the domain
r&€ (0.5, 3.0) and using from 50 to 1000 radial grid points with
the van Leer advection scheme. To try to remove the effects of
errors at the boundaries, we ignore the first and last two grid
points in both cases.
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FiG. 10.—Relative errors in the Weber-Davis wind solution shown in Fig. 9
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The results from the single time step convergence test are
shown in Figure 11, which plots both the relative error and
convergence rate for each variable. We find the asymptotic
convergence rate is 1.0 for every variable except the rotational
velocity, which shows no systematic trend. The results from
the self-convergence test, including both the absolute errors
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and convergence rates, are given in Figure 12. In this case, we
find the asymptotic convergence rate varies between 1.5 for e
up to 2.2 for p. Note that we cannot run this test up to as high a
resolution as the single-step test due to cpu time constraints.
The source of the discrepancy between the convergence
rates measured with these two methods is uncertain. One possi-
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ble explanation is that to run the WD problem, we must use a
finite slice of the angular coordinate since our implementation
of CT is intrinsically two-dimensional, so that both compo-
nents of the poloidal field are always updated. We have used
periodic boundary conditions in the polar angle coordinate, so
that variations of variables in this direction will be small com-
pared to the radial dependence. However, the finite extent of
the problem in the polar angle direction may be affecting the
convergence rates. Hawley (1989) reports that for a fully one-
dimensional code, the single-step convergence test yields con-
vergence rates of between 1.0 and 1.7 for all variables.

The fact that we do not achieve convergence rates of near 2
for the self-convergence test using a second-order-accurate van
Leer advection scheme indicates that the error is being domi-
nated by some step in the calculation other than the one-di-
mensional radial advection (which we showed in Paper I gave
asymptotic convergence rates of 2.1 for the van Leer scheme).
One possible source of this error is the arithmetic averaging on
the staggered grid required to compute some variables (e.g.,
the momentum density from the mass density and velocities).
Another may be that because the radial velocity is spatially
varying, a velocity corrected transport scheme (Finn & Haw-
ley 1989) which accounts for the internal structure of the veloc-
ity field within a zone must be used to achieve second-order
convergence with the van Leer scheme. However, further work
is required to decide this issue.

We have found that convergence testing, particularly single-
step tests, are an excellent way to find subtle bugs in the coding.
If the convergence rate is observed to be near zero, or very
erratic for a particular variable, then this suggests a bug may be
present. Moreover, with single-step evolution the convergence
rates of many variables become effectively decoupled. This
often allows one to identify which equation may be the source
of the trouble, something not possible for nearly every other
method of testing.

4.4. The Solar Coronal Transient Models of B.C. Low

To verify the multidimensional algorithms in ZEUS-2D, it
is vital to perform a fully two-dimensional MHD test problem.
While the two-dimensional magnetic stellar wind solutions of
Sakurai (1985) are attractive, they are generated by a very
complex numerical method themselves, and therefore their
use as a test problem is difficult. Indeed, multidimensional
stellar wind solutions are still an active area of research. We
have found, however, that the analytic, time-dependent two-
and three-dimensional models of solar coronal transients by
Low (1984, and references therein) are excellent test prob-
lems. In fact, since Low has provided time dependent analytic
solutions for a variety of physical situations, even including
self gravity for the flow, and in two and three dimensions, these
models may prove to be standard tests for many MHD codes
in the future.

Low’s (1984) models were originally constructed to study
the solar coronal transients, the often violent expulsions of
coronal plasma which have been revealed by the intense obser-
vational efforts directed at the solar corona over the last decade
(Hundhausen 1989). The solar corona is much more active
than previously thought; coronal transients may occur as often
as twice a day, involving energies of 10! ergs and ejecting up to

ZEUS-2D: II. MHD ALGORITHMS AND TESTS 811

10'° gm of matter per event. To attempt to understand the
dynamics of the solar corona, many theoretical studies, both
analytic and numerical, are now underway.

Low’s models are constructed by assuming that at 1 = ¢y, a
hot, magnetized bubble has been ejected and is being forced
into a spherically symmetric, non-magnetic ambient medium.

At the contact surface between the two media, a strong shock

develops and runs ahead of the contact surface, heating and
compressing the nonmagnetic ambient gas. Let R the radial
position of the shock and R the position of the contact sur-
face. Then at later times, the flow is characterized by three
regions:

1. For r < R the flow consists of a spherically symmetric
radial outflow and an axially symmetric magnetic field.
Stresses in this field are balanced by pressure gradients in an
axially symmetric pressure and density distribution coincident
with the spherically symmetric radial outflow.

2. For R < r < Ryis a spherically symmetric radial outflow
consisting of a shell of hot, compressed unmagnetized ambient
gas.

3. For r> Rygis the spherically symmetric undisturbed, non-
magnetic ambient medium extending to infinity.

The spherically symmetric radial outflow in the region r <
R is generated by using the strong shock jump conditions
(e.g., Courant & Friedrichs 1948) and the properties of isen-
tropic flow. The axially symmetric magnetic medium partici-
pating in the outflow for r < R is generated using the methods
outlined by Low (1984). We do not give the details here, but
merely state the results. Table 1 gives the functional form of
the spherically symmetric radial outflow. Values for the param-
eters needed in these equations, based on the values used by
Low, are given below in Table 3. Our table corrects five typo-
graphical errors in the data for the radial outflow originally
presented by Low (1984, see his Table 1). The axially symmet-
ric magnetic medium located at r < R, is generated by two
arbitrary functions, one for the toroidal and one for the poloi-
dal field components. Low studied the solutions for five spe-
cific examples of these generating functions. In our tests we
have found the second set, presented in § Il of Low (1984 ), are
the most convenient. The functional form of the axially sym-
metric magnetic field, pressure and density resulting from
these generating functions and added to the spherically sym-
metric radial outflow are given in Table 2; values for additional

TABLE 1

FUNCTIONAL FORM OF THE SPHERICALLY SYMMETRIC
RADIAL OUTFLOW

oi(r, 1) = () '[GM/T*
ps(r, 1) = v [GM/P
v(r,t) =1/t

Rc<r<Rs: pr, t) = (1/6)®*dnR] exp [2GMRE/3n¢°)
pi(r, 1) = T87dyRo/§)* exp [2GMR/3n8°]
v,=(r,t)=r/t

p(r) = dy(Ro/rY**"" exp [(2GM/3nR3NRo/7)")]
v(r)=0

r<Rc:

r> Rg:

£ = §(t) = Ry®@"%; Re =

NoOTES.—® = &(¢) = 5'/%,
Rg = Rs(t) = Ry®"%; dy = 10%m exp [-2GM/

Re(t) = $c2,
3nR3).
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TABLE 2

FUNCTIONAL FORM OF THE AXIALLY SYMMETRIC
MAGNETIC MEDIUM

B(r,0,1) = ZA(,r‘z[P0 + (xg)'/’Jg,z(Ag‘)] cos 6

By(r, 8, £) = —ANr®) [T, 2N — A2 T3 ()] sin 0
By(r,0,¢t) = AN ®)7'[Py + (A;‘)‘”Jm()\()] sin 0

p(r, 0, 1) = (4rr*y " Ao P2 — NDA(S, 0) + py(r, 1)

o(r, 0, 1) = QeGMr3)'4,Py4 — )\’{2)2((, 0) + py(r, t)

NOTES.—A({, 6) = Aol Po + (A$)"*J3x(A$)] sin’ 6; p, and p, are
given in Table 1.

parameters needed in these equations are also listed in Table 3.
Note that for r > R a value for the pressure in the unshocked
ambient medium has not been specified. Since the shock is
very strong, the jump conditions across the shock do not de-
pend on the preshock pressure. Nonetheless, the preshock
pressure cannot be completely arbitrary, as it must balance the
gravitational attraction of the sun so that the ambient medium
isin hydrostatic equilibrium. Instead, we merely ignore gravita-
tional forces in the preshock ambient medium (7 > Rg), rather
than explicitly evaluating the pressure which gives hydrostatic
equilibrium.

To run the Low model as a test, we initialize the analytic
solution listed in Tables 1-3 in spherical polar coordinates on a
grid of 128 radial by 80 polar zones on the domain r € (1 X
10", 5 X 10'") and # € (0, «). Note that although the Low
models possess equatorial symmetry, we evolve the model over
the full angular domain O to 7 to check that our numerical
results can maintain this symmetry. Boundary conditions at
the lower radial boundary are specified using the time-depen-
dent analytic solution, while the outer radial boundary is out-
flow, and the polar angular boundaries are both axes of sym-
metry. The solution is evolved to a time of t = 2.62 X 10*s,
which coincides with the time of the final plot given by Low for
this solution. We can compare our numerical results with the
plots given by Low (his Figs. 5-7) and in addition, since the
solution is analytic, we can compute the error in our numerical
solution at any time. Figure 13 shows the density contours,
poloidal field lines and contours of the toroidal field compo-

TABLE 3
'VALUES FOR PARAMETERS IN Low MODEL
(N cgs UNITS)
Parameter Value
) N 5.54 X 10" cm™
Agoennn.. 1.5 X 10* G cm?
Py....... 1.01327
[P 1.104 X 10" cm
N oeeennnnn 5.24 X 1078572
Vovernnnns 242X 10®cm3s72g™13
G........ 6.67 X108 cm?s2 ¢!
M....... 2.0 X 10 gm
m..... 1.673 X 107* gm
Ry....... 1.0 X 10" cm
By ovnnnn. 8.74 X 10% s

FIG. 13.—Numerical solution of the coronal transient problem due to
B.C. Low as computed by ZEUS-2D. The top panels show contours of the
density (solid lines) overlaid representative field lines projected into the
poloidal plane. The bottom panel shows contours of the toroidal compo-
nent of the field. Plots are shown at dimensionless times of = 2, 4, and 6,
where ® is defined in Table 1. Sixteen equally spaced contours between the
maximum and minimum are shown.

nents at three different times during the evolution. We find the
numerical solution agrees well with the analytic solution. Phys-
ically, a magnetic bubble is ejected from the corona, preceded
by the shock and contact discontinuity. At the final time, both
the shock and contact discontinuity have left the grid. In Fig-
ure 14, we provide a more quantitative check by presenting the
relative errors for the density, energy, radial velocity and toroi-
dal magnetic field at the termination of the calculation. We
find the errors are dominated by two features, a wave of error
which has been generated by the inability of the numerical
solution to properly represent the discontinuities present in the
solution at ¢ = t,, and a large error in the last radial zone
associated with the outflow boundary conditions. The error
generated in the initial discontinuities cannot be easily elimi-
nated: it is a consequence of trying to represent a mathematical
discontinuity with a finite numerical resolution. We have en-
countered it previously whenever we performed tests involving
shocks. The error at the outer boundary, however, indicates
the ineffectiveness of our outflow boundary conditions at prop-
agating submagnetosonic flows. Clearly, improvements may
be needed here for some problems.
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FIG. 14.—Relative errors in the density (zop left), radial velocity (top
right), and radial and toroidal components of the magnetic field ( bottom
left and right, respectively) in the numerical solution to the coronal tran-
sient problem as computed by ZEUS-2D at time & = 6. The maximum
errors in each case are 6.16%, 6.86%, 3.07%, and 9.46%. Sixteen equally
spaced contours between the maximum and minimum are shown.

4.5. Magnetic Braking of an Aligned Rotator

The next MHD test of the ZEUS-2D code we have per-
formed is the magnetic braking of an aligned rotator. The
problem is defined by a homogeneous cylinder of gas of den-
sity p, located in a homogeneous ambient medium with den-
sity p,. Both the disk and the ambient medium are threaded by
a uniform strength axial magnetic field with magnitude B,. At
t = 0, the disk is given a constant angular velocity. This pro-

ZEUS-2D: II. MHD ALGORITHMS AND TESTS 813

duces shearing motion at the surface of the disk, which gener-
ates torsional Alfvén waves that propagate along the field lines
both into the ambient medium (accelerating it) and into the
disk (decelerating it). The solution to the problem gives the
evolution of the angular velocity of the disk and the ambient
medium by describing the propagation of the torsional Alfvén
waves. Mouschovias & Paleologou (1980, hereafter MP) have
given an exact, time-dependent analytic solution to this prob-
lem, making it an excellent candidate for the testing of the
ability of ZEUS-2D to propagate torsional Alfvén waves.

The analytic solution given by MP is given in terms of di-
mensionless units, so that B, = 1, p, = 1, and lengths are mea-
sured in units of Z = half thickness of disk = 1. Time is then
measured in units of the Alfvén crossing time of the disk, using
the Alfvén speed in the ambient medium. A single dimension-
less parameter (a = p,/p, = pyin dimensionless units) deter-
mines the magnetic braking time of the cloud and character-
izes the solutions. These solutions can be understood most
readily by using spacetime diagrams to trace the evolution of
the Alfvén waves. Figure 15 shows two such diagrams, one for
the case p; = p,, and one for the case p; > p,. In the former
case, the density is continuous across the surfaces of the disk,

F1G. 15.—Spacetime diagrams of the evolution of the solution to the
magnetic braking of an aligned rotator test problem for a disk to external
medium density ratio of 1 (¢0p) and greater than 1 (bottom). The latter
case is characterized by internal reflections at the surface of the disk
(shaded region). Along a particular time slice are shown typical wave
patterns in each case.
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and the torsional Alfvén waves generated at the two disk sur-
faces propagate to infinity without reflections. At any time
slice, the solution consists of two square pulses of rotational
velocity and magnetic field propagating away from each other
at the Alfvén speed. In the latter case, the solution is compli-
cated by the internal reflections of Alfvén waves that occur at
the disk surface (for a density discontinuity, the associated
reflection coefficient for a torsional Alfvén wave is # = [a'/2
+ 1]/[a!/? — 1]). The partial transmissions that occur at each
internal reflection generate a new wavefront, which propagates
out into the external medium. At any time slice, the solution
consists of a stair step of these wavefronts, with the number of
steps determined by the number of internal reflections that
have occurred in the disk. The mean angular velocity of the
disk decreases exponentially in time, with a characteristic mag-
netic braking time of fyg = (pa/ px)(Z/ V4 ext)(tms = a in di-
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mensionless units). MP give the full time-dependent, analytic
solution for both of these cases, and using a discontinuous
initial condition ( DIC) for the rotational velocity at the surface
of the disk, and a continuous initial condition (CIC) in which
the rotational velocity drops smoothly to zero in the ambient
medium following a cosine function. In Stone et al. (1992)
FORTRAN subroutines are given to compute the MP analytic
solution for both DIC and CIC.

Using the MOC algorithm in ZEUS-2D, we have performed
the magnetic braking test problem with several values for the
density ratios and using both the DIC and CIC. We use very
small amplitudes for the torsional waves to prevent gradients
in the toroidal field from generating compressive waves which
interfere with the subsequent evolution. Figure 16 shows the
results for a density ratio of 10, using the DIC and both the van
Leer and PPA interpolation algorithms for the MOC update. A
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FIG. 16.—Results for the magnetic braking of an aligned rotator test problem starting from discontinuous initial oonditiong (DIC)and using the van Leer
(top) or PPA (bottom) interpolation algorithms in the MOC update for the torsional velocity and magnetic field. The analytic solution is plotted as a solid
line, while the numerical solution generated by ZEUS-2D is shown as points. The density ratio in the of the disk (located at x < 1) to the ambient medium is

10 i both cases.
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grid of 300 zones is used on the domain z € (0, 15), so that 20
zones are located in the disk at z < 1. The evolution is stopped
at t = 13, just before the first wavefront leaves the grid. The
results show the numerical solution gives excellent agreement
with the analytic solution (solid line) for both the rotational
velocity and toroidal magnetic field. The number of zones rep-
resenting the discontinuities is consistent with the perfor-
mance of the interpolation algorithms on advection problems,
i.e., the van Leer method smears the discontinuities over about
14 zones, while PPA (with no steepener) keeps them to about
six. We reiterate that of the schemes we tested, the MOC is the
only method that produces suitable results to this problem. We
find that straightforward finite differencing of the coupled tor-
oidal terms in the equation of motion and induction equation
leads to an unacceptable dispersion error. Only schemes which
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have a large intrinsic diffusion (such as Lax-Friedrichs or Lax-
Wendroff) are able to damp this error away, however these
schemes are therefore unable to resolve sharp features in the
flow.

Figure 17 shows the results for the same problem, but using
the CIC instead. Again, we find excellent agreement between
the numerical and analytic solutions. The van Leer scheme
does not resolve the minima in the angular velocity correctly,
whereas the higher order PPA scheme does. The most impor-
tant feature of Figure 17, however, is that the evolution has
been stopped at a later time (¢ = 15), so that the initial wave-
front has already left the grid. However, we note there is no
reflection of the wave via the outflow boundary condition, i.e.,
using the MOC evolution of the torsional Alfvén wave, we can
achieve perfectly transparent outflow boundary conditions for
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FIG. 17.—Results for the magnetic braking of an aligned rotator test problem starting from continuous initial conditions (CIC) and using the van Leer
~ (top) or PPA (bottom) interpolation algorithms in the MOC update for the torsional velocity and magnetic field. The analytic solution is plotted as a sofid
line while the numerical solution generated by ZEUS-2D is shown as points. The density ratio in the of the disk (located at x < 1) to the ambient medianm is

10 in both cases.
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these waves. This is an important and happy consequence of
using upwind differencing for the torsional Alfvén wave terms.

As an additional test, we have investigated whether the diffu-
sivity of the interpolation algorithms (as manifested by the
smearing of discontinuities) interferes with the ability of the
numerical solution to follow the exponential decay of the angu-
lar velocity of the disk properly. We have tested this using a
very large density ratio for the disk (to give a long magnetic
braking time), and have followed the evolution for many brak-
ing times. We find the MOC follows the exponential decay
very well. Finally, an additional important question is whether
or not the directionally split implementation of the MOC we
have implemented for the toroidal field components gives accu-
rate results in two-dimensional problems. To test this, we have
repeated the magnetic braking test problem in spherical polar
coordinates. Since the Alfvén waves follow the axial magnetic
field, they will propagate across grid lines rather than along
them (as in cylindrical geometry ), and the outgoing waves will
encounter a curved outer boundary. Nonetheless, we find our
method propagates the waves axially, with no evidence for po-
lar motion along the curved grid lines. In addition, the waves
are transmitted through the outer boundary clearly, with no
signs of reflection.

4.6. Propagation of Shear Alfvén Waves

The necessity of using the MOC update for evolving tor-
sional Alfvén waves originally led us to develop the MOC-CT
scheme as described in § 3.2 for evolving the poloidal field. To
demonstrate the necessity of the use of the MOC-CT scheme,
we can use the poloidal (shear) analog of the magnetic braking
of an aligned rotator problem. In Cartesian geometry, if the
“disk” (i.e., the region x < 1) is given an initial shear motion in
the orthogonal direction to the field lines (rather than a toroi-
dal motion as in cylindrical geometry), then the problems
(and their solutions) are identical. Thus, we can use the ana-
lytic solutions of MP to test the propagation of shear Alfvén
waves along the poloidal field lines.

Figure 18 shows the results of propagating a shear wave in
the 1-direction with DIC for a density ratio of one using the
original method of computing the EMF in the CT scheme as
described by EH. This method does not use the MOC to up-
wind along Alfvén wave characteristics, but simply upwinds
the magnetic field components using the fluid velocity. The
large dispersion error present in this method is clearly evident,
indeed the result is nearly identical to those we first achieved
with the original, straightforward finite-differencing scheme of
the toroidal field. The results of this test, combined with our
experiences in finding an accurate algorithm for propagating
the toroidal waves, led us to develop the MOC-CT scheme for
evolving the poloidal field described in § 3.2.2. This scheme
reduces to the MOC used for the toroidal field if v = 0, whereas
if v, = 0 it reduces essentially to the original method. Figure 19
gives the results for the identical problem with the MOC-CT
scheme for both a stationary (v, = 0) and a moving fluid (v, =
1.5). The former case is identical to the toroidal test problem,
and we find identical results. The MOC-CT scheme clearly
now provide for an accurate evolution of shear waves. In the
case that the fluid is moving, the wave fronts should propagate
atv = v, + v,, which since we have used v, = 1.0 should give
v = 0.5 for left-going waves and v = 2.5 for right-going waves.

2-VELOCITY

2-MAG FIELD

Vol. 80
BT o e e e S B S N I LA L S S S B i B SN B ¥
-4
o o
ooee |- ° ° -
Qo ° o o © a0
o ° o0 o ° o
& %o 0° %
2005 - M -
o ooo o0 o
(s} (o]
© 0 09 o ° o0 o ©
o o
.D0B4 o ° ° o -
2003 - . |
o o
2002 - o o T
o o o o |
001 |- ° g,
o o
o a
e o o <] ql:nm —
oo
° o
- 2081 [~ ° o ]
L J
- . 0082 I [N WA SV S NN WO OO WO A S T | |°I L Inl | I T U U (Y S SO W N N

-2 9 .2 .4 6 .8 1,812 1416 1,82022242¢6283.9 3.2
X1

-.8083 —

°
& o o0 o
0%% o @

- 8204

- 2285 Gog

T

& o
000
©? 00060

- #ece

T
2006 - i
L 0005 o0 -
.eoes - 000
L Q 00550
o o0 ©
2004 |- o i
2003 |- -
L o i
.0002 © -
- % -
°
o081 |- o —
=]
- o oo oc’ -
Py B g
o % o
L > %, i
- .eoe1 |- ° -
o

L % i
- ee02 | ° i

o

o

-.82087 TN I U N Y N T N T ST T T N YU I T NS T S T N T T Y T A o |
-.2 @ .2 .4 (8 .8 1,8 1,214 1786 1,812,022 2,42,62,83,0 3,

X1

FiG. 18.—Propagation of a shear Alfvén wave using the original
method for computing the EMF in the CT formalism as described by EH.
Initially, the 2-velocity is perturbed in the region 1 < x < 2, which should
result in two square pulses of 2-velocity (fop) and 2-magnetic field (bot-
tom) traveling in opposite directions along the 1-magnetic field lines. The
method is clearly unable to propagate the shear Alfvén waves accurately in
this test.

Our test solution propagates wave pulses through the moving
fluid at the correct characteristic speeds.

5. SUMMARY

In this paper we have given a detailed description of the
MHD algorithms used in the ZEUS-2D code. These algo-
rithms are based on the CT formalism of EH to ensure diver-
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gence free evolution of the magnetic field, and the MOC to
insure accurate propagation of Alfvén waves.

In addition to a description of the algorithms, we have also
presented the results of the MHD test problems performed on
ZEUS-2D. In order to enable other researchers to use these
same test problems to calibrate other codes, we present a more
detailed description of the setup and execution of each test
problem in Stone et al. (1992).

The Cartesian advection tests, used mainly to check for cod-
ing bugs, reproduce the same quality of results as were
achieved for the HD advection tests using the same advection
algorithms. However, unlike some MHD algorithms based on
evolving the vector potential, the CT scheme produces mono-
tonic profiles for the electric current densities. With the MHD
Riemann problem, we discovered the algorithms in ZEUS-2D
can accurately trace the new types of wave modes that can be
present in MHD flows (e.g., compound waves). Comparisons
of the HD and MHD Riemann problems reveals the much

ZEUS-2D: 1. MHD ALGORITHMS AND TESTS 817

greater complexity of the latter problem. The one-dimensional
magnetic stellar wind solutions of Weber and Davis are an
excellent way of checking the coupling of the velocity and mag-
netic field components in a rotating outflow. We have also
used the Weber-Davis problem to perform convergence testing
of the full ZEUS-2D code. This convergence testing reveals
that the full code generates solutions which converge at less
than second order. Further work is needed to identify the domi-
nant source of error at higher resolutions which is limiting the
convergence rate. As a general technique, we feel convergence
testing can be an excellent way to quantify the overall perfor-
mance of a hydrocode, and can help to find subtle bugs in
coding. The only two-dimensional MHD test problem we have
performed is the coronal transient test problem due to Low
(1984). We find the agreement between our numerical results
and Low’s analytic solutions are excellent. These two- and
three-dimensional solutions should prove useful as a standard
for testing multidimensional MHD codes in the future.
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FIG. 19.—Propagation of a shear Alfvén wave using the MOC-CT scheme for a stationary (op) and a moving (v = +1.5 bottom) fluid. Initially the
2-component of the velocity is perturbed in the region 1 < x < 2 for the former, and 2 < x < 3 for the latter, which generates two square pulses of 2-velocity
(left) and 2-magnetic field (right) traveling in opposite directions along the magnetic field lines.
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One of the most important test problems we have performed
is the magnetic braking of an aligned rotator, which allows us
to check the ability of ZEUS-2D to propagate nonlinear Alfvén
waves. Of the methods we tested, we found the only suitable
scheme for propagating steep nonlinear Alfvén waves was
based on the MOC. All other methods either possess an unac-
ceptable dispersion error (e.g., schemes which are upwind in
the fluid velocity only) which results in large amplitude short-
wavelength oscillations, or are simply too diffusive (e.g., Lax-
Wendroff). Indeed, one solution to the dispersion error is to
add large amounts of diffusion. Instead, we have shown that
our MOC scheme for evolving the toroidal magnetic field and
velocity components can accurately propagate torsional
Alfvén waves with little diffusion. Similarly, the MOC-CT
scheme we have developed for evolving the poloidal field com-

ponents can propagate poloidal Alfvén waves equally well.
These tests indicate that the MOC-CT scheme described in
§ 3.2.2 is important and necessary improvement for the accu-
rate evolution of all MHD wave modes. It is hoped that the
algorithms described here will provide a solid foundation for
future numerical MHD calculations.

We thank David Clarke, Chuck Evans, John Hawley, and
Dimitri Mihalas for many useful discussions. J.S. would like to
thank Dimitri Mihalas, the Department of Astronomy, and
the National Center for Supercomputing Applications
(NCSA) at the University of Illinois for financial aid during
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MP at the NCSA.
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