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ABSTRACT

We describe an algorithm for long-term planetary orbit integrations, including the dominant post-Newtonian
effects, that employs individual time steps for each planet. The algorithm is symplectic and exhibits
short-term errors that are O(e Q?7%) where 7 is the time step, ) is a typical orbital frequency, and e<l1 is
a typical planetary mass in solar units. By a special starting procedure long-term errors over an integration
interval T can be reduced to O(€*Q>7T). A sample 0.8 Myr integration of the nine planets illustrates that
Pluto can have-a time step more than 100 times Mercury’s, without dominating the positional error. Our
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algorithm is applicable to other N-body systems.

1. INTRODUCTION

The longest integrations of planetary orbits are still well
short of the age of the solar system. So far the full planetary
system has been followed for 100 Myr (Sussman & Wisdom
1992), and the five outer planets for 1 Gyr (Wisdom & Hol-
man 1991; hereafter referred to as WH). A semianalytic secu-
lar perturbation theory has been used to follow the planetary
system for 200 Myr (Laskar 1989, 1990) and shows very
good agreement with direct integrations (Laskar et al. 1992;
Sussman & Wisdom 1992). Progressively longer integrations
have generally revealed interesting new phenomena, notably
weak chaos in the orbits of the inner (Laskar 1989, 1990)
and outer (Sussmann & Wisdom 1992) planets. This situa-
tion motivates the development of faster and more accurate
integration methods.

Traditionally, long solar system integrations have used
high-order multistep integration methods in Cartesian coor-
dinates (see, for example, Quinn et al. 1991, hereafter re-
ferred to as QTD). However, substantial improvements in
speed are possible using integration methods that are specifi-
cally designed for motion that is (a) Hamiltonian, and (b)
nearly Keplerian; we call these mixed variable symplectic
integrators and they are the subject of this paper.

The mixed variable symplectic (or MVS) integrators were
introduced by WH, and also (independently and by different
arguments) by Kinoshita et al. (1991; hereafter referred to as
KYN). These derive their advantage by switching continu-
ally between Cartesian variables (wherein the perturbations
are easy to evaluate) and Kepler elements (which make the
solar part simple)—hence “mixed variable.” The symplectic
property (i.e., having certain Hamiltonian conservation laws
built in) helps control long-term errors. Saha & Tremaine
(1992, hereafter referred to as Paper I) describe a startup
technique (“warmup”) that substantially improves the long-
term accuracy of MVS integrators; a related technique
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(“symplectic correctors™) is given by Wisdom et al. (1994,
hereafter referred to as WHT). In this paper we generally
follow KYN’s methods of analysis but WH’s algorithms.

A limitation of symplectic integrators so far is that they
generally allow neither adaptive nor individual time steps.
Adaptive time steps are indispensable for situations with
close encounters or very high eccentricities, but for planetary
and satellite orbits we do not miss them much. However, the
requirement that all planets be followed with a common time
step is certainly undesirable, since planetary orbital periods
range over three orders of magnitude. If the common time
step is dictated by the desired accuracy for Mercury, then for
Pluto we may be paying for several unnecessary orders of
magnitude of accuracy (see Fig. 2).

The main contribution of this paper is to introduce an
MYVS integrator with individual time steps. We describe our
new algorithm in Sec. 3 after covering some operator formal-
ism in Sec. 2. Section 4 has details of the equations of mo-
tion. In Sec. 5 we show how the leading order general rela-
tivistic corrections can be neatly incorporated. Section 6 has
some numerical tests. Finally, in Sec. 7 we discuss some
variations on our method.

The savings in computer time from adopting individual
time steps is modest in the case of the planetary system (a
little over a factor of two), but still significant considering
that solar system integrations often run for weeks or months
of machine time. For other problems, however, (e.g., if the
lunar orbit is integrated as well) the savings can be much
larger.

2. LEAPFROG

Hamilton’s equations can be written in terms of a Poisson
bracket operator as

d p—
E={ ’H}’ (1)
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which has the formal solution
et{ ,H}. (2)

An integration algorithm can be thought of as an approxi-
mate expression for the operator in (2).

A common variety of Hamiltonian is the sum of two (or
more) parts, each of which is soluble in isolation. That is,

H=HA+HB, (3)

where e! -#a} and e! 75} are known. These two operators
can be used as building blocks to construct approximations
to (2). The obvious example is

2
p
HA:E’ HB=V(r)5 (4)

as a kinetic energy and coordinate-dependent potential.
The solar system Hamiltonian can be expressed in the
form (4), but it is more useful to take

HA=HKeps HB=Hinh (5)

where Hyg, is the kinetic energy plus solar potential and H
is the interaction energy between the planets (WH, KYN).
Then e Hxest generates motion along unperturbed Kepler
orbits, while el #ind generates a change of momenta with
the coordinates fixed.

A key ingredient in integration algorithms for such sys-
tems is the operator identity (see, for example, Yoshida
1993):

127 Halerl Hplp1/27] Hp}= p7{ A+ Hp+Her} (6)

where H,, is a formal power series in 7 starting at O(7*) and
consisting of nested Poisson brackets of H, and Hy:

H

1
=15 {H,,Hg},Hp+ EHA +0(7). (7)

In general, the series for H,; does not converge,' and is
interpreted as an asymptotic series. The left side of (6) is
recognized as one step of a generalized form of leapfrog,
with 7 being the time step. The well known result that leap-
frog is second order follows from the fact that H,, is O(7).
The expression (6) also reveals other useful properties:

(i) The integration errors are Hamiltonian; that is, the in-
tegration algorithm follows exactly the dynamics of a nearby
“surrogate’” Hamiltonian

H+H,,. (8

This result must be interpreted cautiously since H,, is only a
formal series, but in practice, for small 7, analyses based on
the leading term in H. provide considerable insight.

(ii) For orbital motion, (i) suggests that the energy error is
bounded and therefore the position errors grow as the inte-
gration time T, rather than as T2 (as in most integration

This is illustrated by the following example, pointed out to us by
J. Wisdom: consider the pendulum Hamiltonian, with H,=1/2p* and
Hpg=—cos q. The map (6) applied to z=(q,p) is then simply the standard
map (to within a shear). The standard map exhibits chaos, which is incom-
patible with motion in an autonomous one degree-of-freedom Hamiltonian
H,+Hz+H,,.

methods). Moreover, the rate of error growth can be esti-
mated from H,, as illustrated by KYN.

Now suppose that Hp is O(e) smaller than H,, as in
planetary motion if we identify H, and Hy as in Eq. (5) (in
this case € is of order the planetary mass). Two further prop-
erties then follow: <

(iii) Since H , consists entirely of nested Poisson brackets
of H, and Hy, H,,, will be of O(e7).

(iv) The long term errors can be reduced from O(e7°T) to
O(€*7T) by special starting procedures (Paper I—see also
WHT). The reason is that H,, has no secular terms at O(e),?
so that to this order the relation between actions and frequen-
cies is the same in the actual and surrogate systems. Thus,
any O(e7"T) error terms come from a difference in the val-
ues for the actions in the actual and surrogate systems—this
difference of course giving rise to a constant frequency error
and hence a linearly growing position error. If the difference
between the surrogate and exact action values can be re-
moved (to leading order in €) by a suitable small alteration in
the initial conditions, all O(e7"T) error can be suppressed.

By concatenating leapfrog steps one can produce higher
order integrators; for example, three consecutive leapfrog
steps with time steps in the ratio 1:—2"3:1 amount to a single
step of a fourth order integrator. Yoshida (1990) shows that
arbitrarily high orders are possible. With suitable modifica-
tions, properties (i)—(iv) carry over to higher order integra-
tors.

In this paper, we develop an integration algorithm with
individual time steps for each planet. The idea is to apply Eq.
(6) recursively, replacing the operator e/ 5! by a more
complicated operator that itself involves a leapfrog step. The
arguments leading to properties (i)—(iv) are not affected by
this change.

3. LEAPFROG WITH INDIVIDUAL TIME STEPS

Suppose that the Hamiltonian for a system of planets is
split into Hy,, and H;p, as in Eq. (5). The details of what is
inside Hy,, and H;, we leave for Sec. 4. Now imagine two
clocks K and /, associated with Hy,, and H,, respectively.
These resemble the clocks used in chess tournaments in that
only one of them is running at a given time; when the “Ke-
pler clock” K is running, each of the planets moves along its
osculating Kepler orbit, and the interplanetary interactions
are turned off; when the “interaction clock™ I is running all
the coordinates stay fixed while the momenta change accord-
ing to H;,,. Thus, an interval 7 of K or I corresponds to the
operators e ket or ™ Hind, respectively. A single leap-
frog step of length 7 can be written in pseudocode as the
following procedure:

(Advance K by 117,

(Advance I by 7,
(Advance K by 3 7). 9)

The exposition in Sec. 3 of Paper I is flawed in that it shows only that the
error Hamiltonian has no secular terms at O (e7) (Koseleff 1993); however,
the argument in that section readily extends to show that there are no secular
terms of order O(e7") for any n.
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We can write a sequence of leapfrog steps, each of size 7, in
terms of the K and I clocks as follows:
(Advance K by 37 '
loop
{Advance I by 7
(If output is desired then exit loop)
(Advance K by 7) (10)
end loop
(Advance K by 7.

Note that K and I show the same time at the start and end,
but in between they are not synchronized.

Now we propose a generalization to individual time steps.
First we assign each planet its own time step (which nor-
mally does not vary during the integration). Assume that the
planets are indexed from innermost outwards as 1...N, planet
i has time step 7;, and we restrict 7;,; to be an integer
multiple of 7;. We assume that Hy, and Hj,, can be written
in the form

N
) HKep=2 HKep,i’

i=1

N
Him=2 Hig; - (11)
i=1

Here Hy,y,; is the Kepler Hamiltonian for the two-body sys-
tem consisting of the Sun and planet i, and H;y ; is the po-
tential energy arising from the interaction of planet i with
planets i +1 to N. These Hamiltonians have the properties

{HKep,i ’HKep,j} = 03 {Hint,i ’Hint,j} = O, (123)
and
{HKep,i ’Hint,j}= O, for ]> i. (12b)

[In Sec. 7 we discuss algorithms for the case where Eq. (12b)
does not apply.]

We can now assign clocks K; and I; to each planet: ad-
vancing a Kepler clock K; by 7 corresponds to the operator
e Hxepd that is, to advancing planet i along its osculating

(Advance all the K; by ;)
loop

Kepler orbit; advancing an interaction clock I; corresponds
to the operator e Hinil | that is, to changing momenta ac-
cording to the interactions between planet i and all planets
j>i (note that the clock Iy does nothing). Equations (12a,b)
imply that the order of advancing any two Kepler clocks
K;,K; can be reversed without affecting the result (i.e., the
corresponding operators commute); the same is true for any
two interaction clocks /;,1;, and also for K;,I; when i<j.
The general idea of our algorithm is to interleave ad-
vances of the various clocks such that (i) at the end of the
integration each of the clocks has been advanced by the same
amount; (ii) the integration is reversible, that is, if the algo-
rithm is applied to the time-reversed final state we recover
the time-reversed initial state; (iii) the clocks remain as close
to synchronization as possible. A suitable algorithm is ex-
pressed by the following recursive procedure:
procedure TICK (i)

(Advance K; by i7)

(Advance I; by ;)

if i>1

loop 7;/7;_; times
call TICK (i—1)
end loop
end if

(Advance K; by 3 7;)
end TICK. (13)

The order of the step that advances /; and the loop that calls
TICK (i—1) can be reversed without affecting the result;
bearing this in mind it is easy to see that the algorithm is
time-reversible. To advance the integration of the N-body
system by 7y one simply calls TICK (N).

However, (13) is not the most efficient form of the algo-
rithm, because it often splits an advance of a K; clock by 7,
into two successive advances by 37;. The form we actually
implement is an equivalent nonrecursive version:

(For any i where K; has changed more recently than I;, advance I; by 7)

(If the i are all equal and output is desired then exit loop)

loop for i=1.N

(If i=1, or K;+ 5 7,<K;_,, advance K; by ;)

end loop
end loop

(Advance all the K; by 3 7).

Note that although the clock Iy does nothing, it must be
monitored along with the other interaction clocks. It may be
helpful to follow the steps in the algorithm by hand in a few
simple cases to see how it works.

As an example, consider the case of two planets, with
7,=27=27. Since I, does nothing we may write I,=I. A
single step (of duration 27) is

(14)
l
(Advance K; by 37 and K, by 7)
(Advance I by 7)
(Advance K; by 7)
(Advance I by 7)
(Advance K; by 37 and K, by 7). (15)
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It is straightforward to derive the error Hamiltonian for this
case:

Hm=-T—2 [(11,1)+ 1 (11,1)+4(21,1)+2(21,2)
12 2
+4(21,1)]+0(r4), (16)

where the symbols (ij,k) represent nested Poisson brackets;
for example, (21,1)={{Hgepo.HndsHxep1}- The first two
terms in Eq. (16) represent the error arising from the leapfrog
step of length 7in planet 1 [cf. Eq. (7)]; the second two arise
from the leapfrog step of length 27 in planet 2; and the final
term is associated with the presence of both planets.

Notice that when the interaction between two planets i
and j is computed, the clocks K; and K; are generally at
different epochs. Second-order accuracy is still achieved be-

cause on average K; is behind K; as much as it is ahead of
K;. Accuracy could be improved by synchronizing the K;
clocks when the interactions are to be computed. One way to
do this would be to run all the K;.; clocks until they syn-
chronize with K;, advance I; by 7;, then run all the K,
clocks back to their previous settings. This strategy is not
useful for solar system integrations, because moving the
planets back and forth along Kepler orbits takes too much
computer time to be worth the gain in accuracy (it would be
useful in a system where advancing K; took much less com-
puter time than advancing ;). A better plan is to replace the
Kepler orbit, for the purpose of the synchronization only, by
an approximation (we might call this “symplectic interpola-
tion”). Even a crude approximation, provided it is symplec-
tic, improves the accuracy substantially. We have found that
a simple rotation in the invariable plane by a preset amount
works well. That is, we replace advances of any I; clock with
the sequence of steps:

(Evaluate ¢;=n;(K;—K;) for j>i, i; being the mean motion of planet j at the start of the integration)

(Rotate each planet j > i in the invariable plane by ¢;)

(Advance I; by’ ;)

(Rotate each planet j > i in the invariable plane by — ¢j). 17)

With symplectic interpolation, the error Hamiltonian (16) is
modified to:

~ 1 1
He"fﬁ ALD+5 (LD +2LN+ 5 (21,2)

+(21,1)

+3[(21,I)— (RI,[)]+3[(21,1)
—(RI,1)]+—2—[(2],2)—(RI,R)] +0(), (18)

where R is shorthand for the presence in nested Poisson
brackets of the Hamiltonian that rotates planet 2 by 7, per
unit time: Hy ,=n,J,, where J, is the component of angular
momentum normal to the invariable plane. The terms in the
first set of square brackets represent the error Hamiltonian
that would be obtained if both planets were integrated with
time step 7. The terms in the remaining square brackets are
the additional errors introduced by advancing planet 2 with

*This can be derived from (16) by replacing Hyepy by Hyep1+Hy, and
Hyepa by H Kep,Z—H R2

time step 27 ; these depend on the difference between H,,
and Hg, and hence are much smaller than in the error
Hamiltonian (16).

As described so far the algorithm leaves errors of
O(€eTiT). To reduce long-term errors further to O(€&?72T)
we use a special starting procedure. The general idea is to
change adiabatically (i.e., over a time much longer than the
orbital time but much shorter than the total integration time)
from a much more accurate integration procedure to the one
we will actually use. This procedure ensures that the error
Hamiltonian H ., grows slowly so that the actions are un-
changed [cf. point (iv) in Sec. 2], which removes the leading
source of long-term error. In Paper I we recommended start-
ing with a very small time step and then gradually increasing
the time step to its final value. (With individual time steps,
this would require starting with all the 7; scaled down and
then gradually scaling them up again, always maintaining a
fixed ratio between the 7;). This procedure did not produce
the desired gain in accuracy with our new algorithm—
apparently because changing the time step causes the system
to sweep through artificial resonances (see Wisdom & Hol-
man 1992), which are prominent because of the large time
steps used by some of the planets. A slightly more subtle
startup procedure works better:
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(Integrate backward (or forward) for a large number of orbits with the 7; all scaled to small values

(by at least ~\/;), while linearly reducing the interaction strengths to zero)

(Integrate forward (or backward) to the starting point with the regular timesteps 7;,
while linearly reviving the interaction strengths to the correct values). (19)

During the first part H.,; is negligible (because the time steps
are small); during the second part H,,, is initially negligible
(because the interplanetary interactions are small and the in-
tegrator follows Kepler orbits exactly) and then grows
slowly, as required for adiabatic invariance of the actions.
Hereafter, we refer to this procedure as a “warm start” or
“warmup.” Its computational overhead is small compared to
the main integration.

The warmup technique is based on eliminating any O(e)
contribution from H . to the actions. The symplectic correc-
tor approach of WHT is to annihilate the O(e) part of H
altogether with a canonical transformation. WHT apply the
transformation to the initial conditions, integrate (using equal
time steps) as usual, and then apply the inverse transforma-
tion whenever output is desired. The difference between
symplectic correctors and warmup is analogous to the differ-
ence between perturbation theory and averaging. As one
might expect, both methods are equally good at controlling
long-term errors. Symplectic correctors have the advantages
that they also remove short-term oscillatory errors at O(e),
and that they can be extended to higher order in € but they
are much more complicated to implement—extension to the
case of individual time steps is straightforward in principle,
but would require formidable algebra.

4. EQUATIONS OF MOTION

The material in this section mostly follows WH’s discus-
sion; however, we include a little more detail on the calcu-
lation of time evolution under H;;,, and skip over some other
points not essential in our context.

The MVS integrators expect a Hamiltonian expressed as a

sum of Kepler terms of the type p%/2m — u/r and interaction
terms of the type V(r); moreover, for the integrator to work
efficiently the interaction terms associated with each body
must be much smaller than its Kepler term. These require-
ments are satisfied if one writes the Hamiltonian in terms of
a special set of variables—well known in classical perturba-
tion theory and for the same reasons—the Jacobi variables.
(Barycentric variables will not do because the Sun’s motion
is not dominated by a Kepler part.) To convert to Jacobi
coordinates one orders the planets (inner to outer being usual
and probably best, but not essential) and reckons the coordi-
nates of each planet from the barycenter of the Sun and all
the previous ones.
~ We use Gaussian units: the solar mass is unity and k2 is
the gravitational constant. The planets have masses m; and
heliocentric coordinates r; (in this section the dummy indices
i and j always range from 1 to N). We first define cumulative
masses 0;, and renormalized masses and gravitational con-
stants m; and u; :

g;=0;_1tm;, op=1,
: 20
,ﬁ.:ai_lm :ikz (20)
1 o_l L Ml a.i_l .
The Jacobi coordinates I; are then defined by
f ~ 3 (21a)
r=r,——— 2, mr;, a
which has the inverse
r,-=l",»+ E (Zlb)
j<i a;j

If we add to the set F;..Fy the position (ry, say) of the
barycenter of the whole system (in some inertial frame), then
the momenta (Py...py, say) conjugate to Iy...Iry have the
simple interpretation that p, is the total momentum and

dr,
dt’

p;=m;V;, where v,= (22)
The canonical set Ty ...y ,p; ...Py is collectively known as the
Jacobi variables; Iy is ignorable and we disregard ry,p, from
now on.
The advantage of transforming to Jacobl variables is that
in the barycentric frame
72

Kinetic energy= E (23)

2m,

For a derivation see Plummer (1960). WH interpret the trans-
formation in an interesting way as a matrix diagonalization.
In view of (22), we can write the full Hamiltonian as

H=HKep+Him+Hmisc7
where [cf. Eq. (11)]

(24a)

H Kep= 2 H Kep,i » where H Kep,i
i
Hyy=2 Hiy;, where Hiy;=Hggi+Hingi0i, (24b)
i

—K2,

]>t

H g, ;=

1 1

Ir —l' ’ Hindir=k2§i: mi('-;_i_ r_l)

The designations H;, and H,q; refer to the direct and indi-
rect parts in the usage of WH; this is similar but not identical
to the traditional usage. H ;. denotes any other physical
effects. The most interesting of these is the general relativis-
tic correction, which we will approximate with a post-
Newtonian Hamiltonian Hpy to be discussed in the next sec-

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1994AJ....108.1962S

rT992AT.~ - CI08. 196250

1967 P. SAHA AND S. TREMAINE: LONG-TERM PLANETARY INTEGRATION 1967

tion. Besides this we include a term H,,, that represents the
attraction of the Sun on the quadrupole moment of the
Earth—Moon system (see QTD for details). Thus, we have

H misc ™ H PN+ H lun * (24C)

Other effects such as solar oblateness, asteroids, and the ga-
lactic tidal field are thought to be <107 of the Kepler part
(see QTD), and we neglect them.

Now we consider time evolution under Hy,, and Hiy, .

Hye, of course generates evolution along a Kepler orbit.
Computing this involves (implicitly or explicitly) transform-
ing from Cartesian positions and velocities to orbital ele-
ments, incrementing the mean anomaly by the appropriate
amount, and then changing back to Cartesian variables. As
advocated by WH, this process is efficiently encapsulated in
Gauss’s f and g functions.

Now consider H g, . It is convenient first to compute the
impulse in heliocentric variables and then to transform to
Jacobi variables. The accelerations due to Hy;, ; are

av; r,—r;)
— kzz m; nTh)
J p—y.3°
dt dir,i Jj#Fi |l' T |
- 25
dvi dV,- 2 ( )
dt dir, i dt @i Jim1 j<i dir, i

Evolution under H,4, is more complicated. Because
H, 4 mixes r; and r;, it cannot be usefully split into a sum
of contributions associated with each planet. The accelera-
tion due to Hg; is

dv; rr r; 1 r;
- Z= 3 — 2 m —é). (26)

=TM
dt i ag; j>i rj

indir

We lump H,;, in with H,; for the algorithm, and thus
compute Eq. (26) whenever the I; clock is advanced. This
procedure does not produce a bottleneck, because all the
dv,/dt|yq, can be computed in O(N) operatlons, while the
dv;/dt|g,; computations require O(N?) operations. We
should also mention the standard practice of rewriting differ-
ences such as I,/7:—r;/r} in (26) to be less sensitive to
roundoff error—see, for example, the discussion of Encke’s
method in Danby (1988).

5. POST-NEWTONIAN CORRECTIONS

General relativistic effects in planetary motion have frac-
tional amplitude of order k%/c*r~10"% at r=1 AU. Neglect-
ing corrections that are smaller still by O(k%*/c?r) or by
O(m), the relativistic effects can be expressed through the
post—Newtonian Hamiltonian (see Landau & Lifshitz 1975):*

~4 ~2

pimi  py  3mip;
H —f s 27
PNT E 27 8l 2mg, 27)

“This form for Hpy assumes that the metric has the form
ds?=[1-2k%(c*r)]dt*—[1+2k*/(c*r)]dx*+O0(c™?), consistent with
the isotropic or harmonic form of the Schwarzschild metric. This is the
metric recommended by the IAU, but older papers (e.g., Brouwer & Clem-
ence 1961) often use the “standard” form of the Schwarzschild metric,
which yields different equations of motion.

note that the distinction between barycentric, heliocentric,
and Jacobi coordinates, and between g; and &% or ; and m;,
is negligible to the accuracy we are considering.

Hpy mixes coordinate and momentum dependencies and
hence is not easily decomposed in the form (3). The usual
practice has been to replace it by an ad hoc potential Upy
designed to mimic the most important effects (Nobili & Rox-
burgh 1986; Paper I; Sussman & Wisdom 1992). Alterna-
tively, one could replace Hpy by its average along Kepler
orbits Hpy. Neither of these approaches is entirely satisfac-
tory. The reason is that the difference between Hpy and Upy
or Hpy usually contains a secular part; this does not notice-
ably affect the perihelion precession, but gives the orbital
frequency an error of order of the post-Newtonian effect it-
self (this could perhaps be alleviated by some special starting
procedure analogous to warmup, though it is not obvious
how).

However, there is a simple extension of the MVS method
that easily accommodates Hpy, and to which we devote the
rest of this section. We rearrange Eq. (27) as

HPN_E (aHKept+Bt/r +71px)a (288.)

i
where

a;=3/(2m;c?), vi=—1/(2mlc?).

(28b)
This is similar to the form (3)—except that there are now
three terms, each of which is integrable in isolation—and we
may thus compute time evolution as follows.
Each oH ﬁep,i we combine with the corresponding
Hyep,; in Eq. (24b). Then advancing the K; clock by 7; is
redefined as the operator

exp(7{ ,Hyep,it ainKep i)

Under the operator (29) Hye,; is conserved and equals
—3um;la; (a; being the osculating semimajor axis in Jacobi
variables), so (29) is equivalent to

Bi=—uim;/c?,

)

(29)

' 3u; :
CXp(Ti{ ’HKep,i})’ 7 —(1_ zcza.) T (30)

Thus, to incorporate the a HKep ; terms, we merely rescale
the time argument passed to the f and g functions. The B,/7?
are trivial to deal with—we absorb them inside Hq; . The
y:p? terms we incorporate through leapfrog operators that
evolve under a p; term before and after advancing a K;
clock.

Because Hpy changes the momentum dependence of the
total Hamiltonian, we no longer have p;=mdr;/dt [Eq.
(22)], so the expressions for accelerations in Sec. 4 have to
be modified. A simple way to incorporate the necessary
modifications is as follows. We redefine v; to be a pseudo-
velocity:

. dn P

a0 T (31)

Wiriting out half of Hamilfon’s equations for the full Hamil-
tonian of Eq. (24), we have
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FiG. 1. Plotted here is the maximum error in mean anomaly M up to time T,
against T, for leapfrog with individual time steps. Mercury’s time step is
71/32 days, and the other time steps are larger in the ratios
1:2:2:4:8:8:64:64:256. The integration includes effects from general relativ-
ity and the Moon but does not integrate the lunar orbit. The faster-than-
linear error growth for Mercury (noticeable for all the inner planets in Fig.
2) is presumably due to roundoff error.

1 (07 3u
17(7*?)]’ 2

relating the true velocity and pseudovelocity. The expres-
sions for accelerations in Sec. 4 become valid again if the V;
are interpreted as pseudovelocities. Operationally, this means
that we have to transform the initial velocities to pseudove-
locities by solving Eq. (32) for the ¥;, carry out the integra-
tion in terms of the pseudovelocities, and then transform
back to true velocities to output results.

In our implementation, the relativistic corrections con-
sume less than 5% of the computing time.

ar;, .
L=y,

dt

6. SAMPLE INTEGRATIONS

We have implemented the individual time-step algorithm
for nine planets. After some experimentation, we picked time
step ratios of 1:2:2:4:8:8:64:64:256 for Mercury, Venus,...,
Pluto, which makes the longitudes roughly equally accurate
for the planets. Accuracy of ~1 arcsec per century (or about
1 rad in 20 Myr) requires the smallest time step to be about
one week, assuming a warmup is used at the start. Symplec-
tic interpolation was used as described in Sec. 4 to synchro-
nize the Kepler clocks before advancing the interaction
clocks. The computer time required is quite implementation
and compiler dependent, but our code takes about 15 s for
each kyr of integration on a 50 MHz Sparc-10; if all the time
steps are reduced to equal Mercury’s our code takes about 35
s per kyr. The latter case corresponds roughly to the Sussman
& Wisdom (1992) integration after refinements by WHT—
the main difference is that the other authors use a more ap-
proximate form for the post-Newtonian part. At the 1 arcsec
per century level the new algorithm is about an order of
magnitude faster than the 12th order symmetric multistep

FiG. 2. Like Fig. 1, but with all the planets having a time step of'7‘1/32 days.
Note that the vertical scale has been shrunk to accommodate the much larger
range of accuracies.

integrator in Quinlan & Tremaine (1990), but of course for
high-enough accuracy requirements the latter would be more
efficient (in the absence of roundoff errors). '

Here we check our implementation, with and without in-
dividual time steps, against the 12th order symmetric multi-
step integrator. For the symplectic integrator we set Mercu-
ry’s time step to be 7 1/32 days; with the other time steps in
the ratios above a single cycle then spans 1800 days. For the
warmup we first integrated back 5000 yr with all the time
steps reduced 32-fold, while linearly reducing the interaction
strengths to zero, then integrated forward to the starting point
while gradually reviving the interactions again. For the mul-
tistep integrator we used a 1/2 day time step, which should
be much more accurate than the symplectic integrator. In Fig.
1 the symplectic integration has individual time steps; in Fig.
2 the symplectic time steps are all reduced to equal Mercu-
Iy’s.

It is straightforward to estimate the time saved by inte-
grating with individual time steps. Suppose that advancing
the Kepler clock K; takes computer time Aty , and that ad-
vancing the interaction clock /; takes time (N—i)At¢; (the
number of interactions to be calculated equals the number of
planets outside planet i). Then the ratio r of computer time to
integration time is

N

r=2
i=1

Aty
7

(V=) %} (33)

If a common time step is used this expression simplifies to
Aty N(N-1) At
y Ak NONV-D) A

2 T

For the time step ratios we have used, the reduction r/r in
computer time from using individual time steps will lie be-
tween 0.28 (if Azx>A¢)) and 0.46 (Atx<<At;); we actually
obtained a reduction of 0.43.

We offer no simple prescription for choosing the time
steps 7;. The time steps used in the sample integration were

(34)

r.=
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chosen by trial and error. Artificial stepsize resonances (Wis-
dom & Holman 1992) will be more numerous (and the reso-
nances encountered can also be of lower order and conse-
quently stronger) if there are individual time steps.
Comparison of medium-length test integrations with differ-
ent time step sets is always prudent.

We have not addressed errors arising through roundoff,
which can be significant in long integrations. The usual
methods for controlling roundoff error, based in part on car-
rying out selected additions in quadruple precision (Quinn &
Tremaine 1990), are not effective in MVS integrators, where
most of the roundoff arises during the repeated conversion
between Cartesian coordinates and Kepler elements.

7. VARIANTS

Many variants are possible on the integrators we have
discussed. A trivial and well known example is to inter-
change the roles of the K and I clocks in the leapfrog cycle
(10). For the two-time-step integrator (15), an alternative
with similar properties is

(Advance K; by 3 7)

(Advance I by 7

(Advance K; by 7 and K, by 27)

(Advance I by 7).

(Advance K; by 3 7). (35)
In contrast to simple leapfrog, there is no time-reversible

algorithm of equal simplicity to (15) or (35) that begins by
advancing the clock I.

The methods described here can be used to integrate other
Hamiltonians of the form (11) that satisfy the Poisson
bracket relations (12). Our methods can even be applied to
systems that do not satisfy the relations (12b): simply make
the assignments Hy, 1«Hy, Hip 0, i=2...N.

As an example of an application in another physical con-
text, we consider the integrator for use in molecular dynam-
ics that is described by Skeel & Biesiadecki (1994). They
wish to follow the motion of a particle under the actions of
forces F and F,, where F; varies more rapidly than F, and
the time step for evaluating F, is M times the time step for
F, (for simplicity we examine only the case M =2). We can
derive their algorithm from (15) by redefining the clocks K;
and I: when K; is running the particle’s coordinates stay
fixed while its momentum changes according to the force F;,
and while / is running its position changes at fixed momen-
tum. For a particle of unit mass and phase-space coordinates
(x,v) we then have

(Increment v by 3 7F;+ 7F,)

(Increment x by 7v)

(Increment v by 7F;)

(Increment x by 7v)

(Increment v by } 7F; + 7F,), (36)
which is the integrator given by Skeel & Biesiadecki.
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