

Roadrunner: Heterogeneous Petascale Computing for Predictive Simulation (Los Alamos Unclassified Report LA-UR-07-1037)

Advanced Simulation & Computing (ASC) 2007 Principal Investigator's Meeting Las Vegas, NV (2/20-22/2007)

John A. Turner

Group Leader, Computational Physics and Methods Group (CCS-2) Computer, Computational, and Statistical Sciences Division (CCS)

turner@lanl.gov

Jan. 2007 IDC Study: "Next Phase in HPC"

What Will Be The Next Phase in HPC, and Will It Require New Ways of Looking at HPC Systems?

- key findings:
 - individual processor core speeds relatively flat
 - bandwidth per socket will grow slowly, but cores per socket will increase at to Moore's law (doubling every 18-24 mo.)
 - "inverse Moore's law" for bandwidth per core
 - new ways of dealing with parallelism will be required
 - must focus more heavily on bandwidth (flow of data) and less on processor

What's driving the move to multi-core?

CPU speeds are stagnating

- diminishing returns from deeper pipelines
- multi-core increases spatial efficiency, constrains processor complexity

power considerations

 multi-core yields improved performance per watt

"doubling happens... until it doesn't"

Multi-core Challenges

exacerbates the imbalance between processing and memory access speeds

- not like large SMPs
- all systems start to look like attached processors
 - high latency, low relative bandwidth to main memory

must identify much more parallelism in apps

- not just thousands of processes now thousands of threads within nodes
 - the era of "relentless multithreading" is upon us

GPGPU Developments

p. 9

NVIDIA G80 architecture

- 681 million transistors, 128 stream processors
 - Intel Core 2 Extreme Quad Core (Kentsfield) has ~582 million
 - supports "thousands" of threads in flight
- more support for general programming (branching, etc.)
- simultaneously announced <u>CUDA</u> SDK
 - treat GPU as pure compute engine no graphics layer

"GPU"s with no video out

pure compute engine

Roadrunner is a Critical Supercomputer Asset

Contract Awarded to September 8, 2006

Critical component of stockpile stewardship

- Initial system supports near-term mission deliverables
- Hybrid final system achieves PetaFlops level of performance

Accelerated vision of the future

 Faster computation, not more processors

Cell processor (2007, ~100 GF)

CM-5 board (1994, 1 GF)

Roadrunner Goals

Provide a large "capacity-mode" computing resource for LANL weapons simulations

- Purchase in FY2006 and stand up quickly
- Robust HPC architecture with known usability for LANL codes

Possible upgrade to petascale-class hybrid "accelerated" architecture in a year or two

- Capable of supporting future LANL weapons physics and system design workloads
- Capable of achieving a <u>sustained</u> PetaFlop

Phase 1 (Now)

- Multiple non-accelerated clustered systems Oct. 2006
- Provides a large classified capacity at LANL
- One cluster with 7 Cell-accelerated nodes for development & testing (Advanced Architecture Initial System — AAIS)

Phase 2: Technology Refresh & Assessment (Summer '07)

- Improved Cell Blades & Cell software on 6 more nodes of AAIS
- Supports pre-Phase 3 assessment

Phase 3 (FY08)

- Populate entire classified system with Cell Blades
- Achieve a <u>sustained</u> 1 PetaFlop Linpack
- Contract Option

2007 ASC PI Mtg, John A. Turner (turner@lanl.gov), LA-UR-07-1037

p. 14

Hybrid Programming

Decomposition of an application for Cell-acceleration

- Opteron code
 - Runs non-accelerated parts of application
 - Participates in usual cluster parallel computations
 - Controls and communicates with Cell PPC code for the accelerated portions
- Cell PPC code
 - Works with Opteron code on accelerated portions of application
 - Allocates Cell common memory
 - Communicates with Opteron code
 - Controls and works with its 8 SPEs
- Cell SPE code
 - Runs on each SPE (SPMD) (MPMD also possible)
 - Shares Cell common memory with PPC code
 - Manages its Local Store (LS), transferring data blocks in/out as necessary
 - Performs vector computations from its LS data

Each code is compiled separately (currently)

- no compiler switches to "just use the <u>Cells</u>"
 - not even a single compiler 3 of them
- currently, code developer must decompose application and create cooperative program pieces
- tools are an issue

Hybrid Programming Env. Under Development With IBM

Computational Library

- Data partitioning
- Task & work queue management
- Process management
- Error handling

Communication Library

- Data movement & synchronization
- Process management & synchronization
- Topology description
- Error handling
- First implementation may be <u>OpenMPI</u>

Advanced Hybrid Eco-System

higher level tools

- Cell compilers for data parallel, streaming, work blocks, etc. undergoing rapid development
 - <u>Scout</u> (LANL), <u>Sequoia</u> (Stanford), <u>RapidMind</u> (commercial), <u>PeakStream</u> (commercial)
 - game-oriented Cell development tools
- more expected in the future

The bright side...

"Big Iron" sometimes inspires algorithmic advances

- hard for computational physicists to admit...
 - Krylov methods as iterative solvers enabled by vector in 70s
- we'd like to think it was a "push" instead of a "pull", but
 - computational physicists often don't think "outside of the box" without the lure of a new, bigger, shinier box

Petascale systems will serve as catalyst for next leap(s) forward

will be as painful as previous architectural shifts

vector, massively-parallel, cache-based clusters, etc.

Heterogeneous Manycore Architectures Are Here

we have been pursuing heterogeneous computing for several years

- results thus far (<u>GPU</u>, <u>FPGA</u>, <u>Cell</u>) are encouraging
- <u>Roadrunner</u> is simply the first large-scale example

focus on applications of interest

- develop algorithms and tools not just for <u>Roadrunner</u> but for heterogeneous computing in general
- *re-think* algorithms rather than simply *re-implement*

ultimate goal is improved simulation capabilities

maybe "better" rather than simply "faster"

COMPUTER 6 COMPUTATIONAL SCIENCES

Dealing with the Processor / Bandwidth Imbalance

"better, not just faster"

- high-order methods
 - more computation per word of memory moved
 - more accurate answer in less elapsed time
- more rigorous multiscale treatments
 - e.g. simultaneous subgrid simulations
- integrated uncertainty quantification / sensitivity analysis
- ensemble calculations
 - compute set of values / cells / particles
- rather than compute properties a priori, store in tables, and interpolate, compute on-the-fly
- coupled physics: rigorous nonlinear consistency
- different problem decompositions

long-term, must (re-)design algorithms for memory locality and latency tolerance

COMPUTER 6 COMPUTATIONAL SCIENCES

Radiative Heat Transfer on GPUs

original approach – project onto hemisphere

- hemispheric projection inefficient
- straight lines map to curves
- req. intricate tessellation

current "standard" algorithm is hemi-cube

- developed in 1985 for graphics (radiosity)
- project onto faces of tessellated cube

Image credit: http://raphaello.univ-fcomte.fr/IG/Radiosite/Radiosite.htm &

PUs are hardware-accelerated for 3D projections
insight led to improved algorithm
one projection rather than five, built-in adaptivity

Image credit: http://raphaello.univ-fcomte.fr/IG/Radiosite/Radiosite.htm

bandwidth/latency limitations can be overcome

- identify computationally-intensive chunks
 - match algorithms to hardware

Roadrunner Advanced National Algorithms & Assessment Team

continuation of "swat team" effort initiated in Spring 2006

- gain early experience with <u>Cell</u>
- focus on apps of interest to ASC
- inform <u>Roadrunner</u> architecture decisions

two primary goals for FY07

- develop predictive models for <u>LINPACK</u> performance on final system
 - follow-on to performance modeling efforts for Q, etc.
 - track IBM's LINPACK implementation
- develop advanced <u>Cell</u>/hybrid algorithms
 - assess potential performance of applications on final system
 - prepare for accelerated science apps in FY08, and later for multi-physics applications

Initial Cell Results are Encouraging

Transport

- neutron transport via S_n (PARTISN)
 - <u>Sweep3D</u> 5x speedup on <u>Cell</u>
 - sparse linear solver (PCG)
- radiation transport via implicit Monte Carlo (MILAGRO)
 - 10x speedup for opacity calculation on <u>Cell</u>

Particle methods

- Molecular Dynamics (e.g. SPaSM)
 - 7x speedup on <u>Cell</u>
- Particle-in-cell (plasma)

Fluid dynamics

- compressible Eulerian hydro
- compressible DNS of turbulence
- advanced methods

amos

mesh-free / particle methods

Roadrunner Represents the Future of Computing

View initial RR design as simply "rev. 0" of largescale many-core hybrid computing.

- rev. 1 processors on boards in PCI-E slots
- rev. 2 processors directly on motherboards
- rev. 3 different processors on die

Develop algorithms and software tools for many-core heterogeneous computing - not just RR.

