Cosmological Radiation Hydrodynamics with
Enzo

Michael L. Norman™, Daniel R. Reynolds and Geoffrey C. So

*Physics Department, U.C. San Diego, La Jolla, CA 92093
TCtr. for Astrophysics and Space Sciences, U.C. San Diego, La Jolla, CA 92093
*Mathematics, Southern Methodist University, Dallas, TX 75275-0156

Abstract. We describe an extension of the cosmological hydrodynamics Endeto include the
self-consistent transport of ionizing radiation modeled in the flux-limited diffusion approximation.

A novel feature of our algorithm is a coupled implicit solution of radiation transport, ionization
kinetics, and gas photoheating, making the timestepping for this portion of the calculation resolution
independent. The implicit system is coupled to the explicit cosmological hydrodynamics through
operator splitting and solved with scalable multigrid methods. We summarize the numerical method,
present a verification test on cosmological Stromgren spheres, and then apply it to the problem of
cosmological hydrogen reionization.
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INTRODUCTION

A current frontier in cosmological structure formation simulations is including the feed-
back of radiating sources such as galaxies and AGN on the intergalactic medium (IGM)
in a self-consistent way. For example, the collective UV radiation from protogalaxies
Is believed to reionize the IGM at~ 7 — 8 [1]. This process can be thought of as the
expansion and eventual overlap of R-type ionization fronts driven by high rates of star
formation in the protogalaxies. R-type ionization fronts couple to the gas very weakly.
Consequently a number of studies have simulated cosmological reionization by post-
processing density fields taken from cosmological simulations with a standalone radia-
tive transfer code ; e.g. [2, 3, 4]. However, closer to the sources and within the galaxies
themselves where the gas density is higher, or when an intergalactic R-type front sweeps
over a dense clump, ionization fronts may become D-type. When this happens coupling
to gas motions is strong and a self-consistent approach to modeling is required in which
hydrodynamics, radiative transfer, and the thermal/ionization state of the gas are evolved
in a coupled fashion [5].

[6] summarizes a variety of methods currently under development by the numerical
cosmology community that do this. The radiative transfer methods employed include
ray tracing, Monte Carlo, and moment methods. Here we present a method based on
flux-limited diffusion. A novel feature of our algorithm is a coupled implicit solution of
radiation transport, ionization kinetics, and gas photoheating, making the timestepping
for this portion of the calculation resolution independent. This will be essential when
adaptive mesh refinement (AMR) is employed. At present our algorithm is only im-



plemented on uniform (non-adaptive) Cartesian grids. After describing our method, we
verify its correctness on a cosmological Strémgren sphere test problem. We then present
a low-resolution “first light" test of the coupled code to the problem of cosmological
reionization. A more comprehensive description of our method and verification tests can
be found in [7].

PHYSICAL MODEL

We consider the coupled system of partial differential equations
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These describe conservation of mass (1), conservation of momentum (2), conservation
of energy (3), chemical rate equations (4), flux-limited diffusion radiative transfer (5)
and Poisson’s equation (6), in a coordinate system that is comoving with the expanding
universe [8, 9, 10, 7]. The independent variables in these equations consist of the comov-
ing baryonic densityy, the proper peculiar baryonic velocity, the total gas energy per
unit masse, the comoving number density for each chemical spegies= 1,...,Ns,
the comoving radiation energy densky and the modified gravitational potential

The cosmological flux-limited diffusion (FLD) equation (5) deserves some comment.
In deriving this equation from the general multi-frequency version [10],
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we have assumed a prescribed radiation frequency specig(w,), allowing the
frequency-dependent radiation energy density to be written in the Eytr,t,v) =
E(x,t) xe(v). With this assumption, the single “grey” radiation energy density is given
by
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and the equation (5) is then obtained through integration of (7) over frequencies rang-
ing from the ionization threshold of hydrogehvy = 13.6 eV) to infinity. In this



paper we assume the radiation hadg= 10° blackbody spectrum, i.exg(v) =
3 h
g (2)° / (exp(% ) — 1)
The dependent variables in these equations are the proper prpsthed¢emperature
T, and the comoving electron number densigygiven through the equations
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Herey is the ratio of specific heats, which we take td3)8; m, corresponds to the mass
of a proton andk, is Boltzmann’s constant. The local molecular weightlepends on
the density and chemical ionization state.

In addition, the system (1)-(6) contains a number of coupling terms and coefficients.
The coefficienta(t) = (1+z)~! denotes the cosmological expansion parameter for a
smooth homogeneous background, where the redsisfa function of time only; all
spatial derivatives are therefore taken with respect to the comoving paositiarya(t).

The terma = da}T(t). a(t) is obtained by integrating the Friedmann equation for the set
of assumed cosmological parameters. The gas heating and coolingsrates/\ are
functions of the temperature, radiation energy density and chemical ionization state.
The temperature-dependent chemical reaction igteslefine the interactions between

chemical species, and the photoionization na[’@ depends on the radiation energy
density. Formulas for all of these terms may be found in the references [11, 12, 13,
14, 15, 16].

In the radiation equation (5§, is the speed of light, the total opacikyis a function
of the chemical ionization state, and the emissivjtys provided as either a radiation
source term, or may depend on the density, velocity, gas energy, and chemical ionization
state. The formulae for these dependencies may be found in the references [12, 17]. Of
special importance in this equation is the coefficient funcbBemvhich in a flux-limited
diffusion approximation attempts to allow the equation to span behaviors ranging from
nearly isotropic to free-streaming radiation. To this end, we choose the coefficient to be
of the form
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with R = |GE|/E,i = 1,2,3. Here k1 = K + Ks is the total extinction coefficient,

wherek is the opacity ands results from scattering [18]. The function (12) has been
reformulated from its original version [9] to provide increased stability for scattering-
free simulations involving extremely small opacities (kg.= k < 1), as is typical in
cosmology applications.

In the Poisson equation for the gravitational potential (6), the baryonic gas is coupled
to collisionless dark mattewy, and the cosmic mean densifg) solely through their



self—-consistent gravitational field. Herg provides the gravitational constant, and the
dark matter density is evolved using the Particle-Mesh method described in [19, 20, 21].

ALGORITHM

Instead of working with the equations directly in CGS units, we first normalize the
system to render the values tractable for floating point computation. To this end, we
define the scaled units

X:X/Ux; g:g/uga f‘:t/u'[a (13)

where the constantsy, U and ug correspond to the typical magnitudes of length,
time and mass at the start of the simulation. We further define the density unit factor
Ug = Ug/(ux)® and velocity scaling facton, = uy/u. We note that due to our use of
comovingength, these constants are all redshift-independentpidpeerlength values

at any point in the simulation are therefore given by

Xproper= Xa(t) = Xuca(t). (14)
With these unit scalings, we define the normalized variables
Po=p/us,  Tp=Vp/u,  E=e/uj, (15)
E=E/(uwuy), fi=n/ug, @=0/u
The proper densities may be obtained from the comoving densities through the formulae
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With these rescaled variables, we rewrite our equations (1)-(6) as the normalized system
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Here,a now refers to the derivativ%. For clarity of notation, all subsequent variables
are shown without the- superscript, although all solver algorithms operate on the
normalized variables.

Operator-Split Hydrodynamics with Radiative Feedback

We solve the coupled system (17)-(22) using an operator-split framework, wherein we
solve sub-components of the system one at a time, feeding the results of each sub-system
into the remaining parts. In this approach, a time step is taken with the steps:

(i) Project the dark matter particles onto the finite-volume mesh to generate the dark
matter density fielgbgm.

(i) Solve for the gravitational potentigl using equation (22).

(i) Advect the dark matter particles with the Particle-Mesh method [19, 20, 21].

(iv) Evolve the hydrodynamics equations (17)-(19) with a high-order, explicit-time
upwind method. In this step, the velocity fielgadvects both the chemical number
densities; and radiation energy densiBy.

(v) Using a high-order implicit method, solve a coupled reaction-diffusion system (19)-
(21) to obtain the updated number densitiggadiationE and gas energg.

The equation (19) is involved in both steps (iv) and (v) above. To do this, we split the gas
energy into two part® = e, + &, wheree, results from the hydrodynamic evolution of
the system (step (iv)), argd is the gas energgorrectionthat results from couplings with
radiation and chemistry (step (v)). With this splitting, the hydrodynamic solver used in
step (iv) of the algorithm solves the system of equations
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using the Piecewise Parabolic Method (PPM) [22], on a regular finite-volume
spatial grid. This solve evolvesp,vp,€",n",E") to the time-updated variables
(PPt vt ey and the advected variablgs;,E*), and is implemented in the
community astrophysics code Enzo [21, 23, 24].



Step (v) then solves the coupled system,
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using a fully implicit nonlinear solution approach to evolve the advected variables
(e,n¥,E*) to the time-evolved quantitie@l ™ o EM1). To this end, we define
the vector of unknown&) = (ec,ni,E)T, and write the nonlinear residual function
f(U) = (fe, fu;, fE)T, Where

fe(U) =e—S(U), (31)
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Here the functionss(U) and S, (U) provide the analytical solutions to ad(At?)-
accurate approximation of the spatially-local ODE system (28)-(29) for a given value
of E [25]. The residual equation (33) defines a standard two-l8welethod for time
integration of the equation (30). Therefore this overall nonlinear residual defines an up-
to-second order implicit time discretization of the coupled system (28)-(30); where the
time-evolved state) " is found through solution of the problefifU) = 0.

To solve this nonlinear problem, we usglabalized Inexact Newton’s Meth¢26,
27], that iteratively proceeds toward the solutldA™! through approximately solving
a sequence of linearized probled@J,)S = — f (Ux), whereJ(Uy) is the Jacobianof
the nonlinear functiorf, evaluated at the current Newton iterate A full description
of our solution algorithm is provided in [7]. To summarize this process, we solve
these linear Newton systems through a Schur complement formulation, that reduces
the coupled linear system to a sequence of simpler sub-systems, culminating in an
update to a modified radiation equation. This Schur complement subsystem is solved
using a multigrid-preconditioned conjugate gradient method from the HYPRE library
[28, 29, 30].

We measure convergence of the Newton iteration with the RMS norm

2 1/2
w] = (%) , (34)

where N(Ns + 2) is the number of unknowns iw, since this norm does not grow
artificially larger with mesh refinement.



VERIFICATION TESTS

The model equations and solution algorithm in this paper have been rigorously tested
on a myriad of problems, ranging from pure radiation transport, to interacting radiation
and hydrodynamics, to dynamic radiation-hydrodynamics with chemical ionization [7].
In lieu of reiterating those tests here, we demonstrate the approach on a single problem
before moving on to our target application.

We consider a verification problem that performs isothermal ionization of a static (i.e.,
no fluid motions other than Hubble expansion) neutral hydrogen region, within a cosmo-
logically expanding universe. The problem is originally due to Shapiro & Giroux [31],
and exercises the radiation transfer, cosmology and chemical ionization components of
the coupled solver. The physics of interest in this example is the expansion of an ion-
ized hydrogen region in a uniform gas around a single monochromatic source, emitting
Ny = 5x 10*8 photons per second at the ionization frequency of hydroben=13.6
eV). Given the initially-neutral hydrogen region and strength of the ionizing source, the
ionization region expands rapidly at first, with the I-front approaching the equilibrium
position where ionizations and recombinations balance, referred to as the Stromgren ra-
dius. However, due to cosmological expansion, this equilibrium radius begins to increase
much faster than the I-front can propagate. The analytical formula for the location of the
Stromgren radius as a function of time is

: 1/3
rs(t) = %} : (35)

4magnH

where the proper hydrogen number densjjydecreases due to cosmological expansion
by a factor ofa=3(t). Hereag ~ 2.59 x 10~%3 cm®/s is the case-B hydrogen recombi-
nation coefficient. If we defind = agny o/Ho/(1+ 2), whereny g is the hydrogen
number density at the initial redsh#s, we may calculate the analytical I-front radius at
any point in time as

rt) =rso <)\ e 1M /1 " e @ [1— 200+ 2q0(1+ 20) /8] V2 dé) 1/3, (36)
where
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F(a) = [2— 4do — 200(1+ 20) /8] [1 - 200 + 2q0(1+ 20) /8] /2, (38)

and wherey is the cosmological deceleration parameter.
We perform four of the tests provided in the original paper [3f]= {0.5,0.05},
andz, = {4,10}. These correspond to the cosmological parameters found in Table 1.
Here,Lg is the initial box size andHg is the Hubble constant. The valu€s, QA and
Qy, are the contributions to the gas energy densiy-a0 due to non-relativistic matter,
the cosmological constant, and baryonic matter, respectively. These two deceleration
parameters result in slightly different functions for the expansion coeffi@efor
go = 0.05 we computea(t) using equations (13-3) and (13-10) from [32], while for
o = 0.5we computea(t) = (14 z(t)) . We begin all problems with an initial radiation



TABLE 1. Cosmological parameters for the
verification tests. See text for descriptions.

Qo 2 Lo Ho Qm Qan

0.5 4 80kpc 05 10 0 0.2
005 4 60kpc 1.0 01 O 0.1
05 10 36kpc 05 10 0 0.2
005 10 27kpc 10 01 0 01

L I-front radius vs scaled redshift I-front radius vs scaled redshift, z0=4
——q0=05, 0=4 T L ‘ ‘ ‘
09t - - -0=0.05, 20=4 |
——0=0.5, 20=10
- - -(0=0.05, z0=10
B B
0.2 0.1 q0=0.5 (computed) ||
’ o 0=0.5 (analytic)
0.1f 0=0.05 (computed)
o 0=0.05 (analytic)
0 ‘ ‘ ‘ o ‘ ‘ ‘ . ‘ ‘
0 0.5 1 15 2 25 3 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
—ogl(1+/(1+2,) -ogl(1+2)/(1+2,)]

FIGURE 1. Left: I-front radius vs. scaled redshift for the four tests. Right: I-front radius vs scaled
redshift for thezg = 4 tests; analytical solution values are shown with open squares.

energy density oE = 10-3% erg cnm 2 and an initial ionization fractiony /oy o = 0.

The initial density is chosen gs,o = 1.175x 1028 g cn2 for o = 0.5, or ppo =

2.35x 10728 g cm 2 for gg = 0.05. All simulations are run from the initial redshift

Zo to z= 0. The ionization source is located in the lower corner of the box. We use
reflecting boundary conditions at the lower boundaries and outflow conditions at the
upper boundaries in each direction. The implicit solver used a convergence norm of
p =2, time step parameter &= 0.51, a desired temporal solution accuragy = 0.001

and inexactness parametigr= 10-13||f (Uy)|| (see [7] for further explanation of these
parameters).

In Figure 1 we plot the scaled, spherically-averaged I-front position with respect to
scaled redshift for each of the four tests (with axes identical to [31], Figure 1a), as well
as the zoomed-in version for thrg = 4 tests along with their analytical solutions; all
of these tests used128® spatial mesh. In Figure 2 we plot the error in the computed
I-front radius as we varied the spatial mesh size for the two dapeg,) = (0.5,4) and
(0.05,4). The accuracy in the computed radius improves with mesh refinement.



Error in I-front radius vs scaled redshift, . = 0.5, z = 4 Eyror in I-front radius vs scaled redshift, g = 0.05,z_ =4
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FIGURE 2. Convergence of I-front radius vs. scaled redshift for the cgges{0.5,0.05} andz, = 4
as the mesh is refined: spatial meshes showrl&t¢blue dotted) 32 (green dashed§4® (red solid),
and128 (black dot-dashed).

APPLICATION TO COSMOLOGICAL REIONIZATION

To illustrate the operation of the combined cosmological radiation hydrodynamics plus
ionization kinetics code, we simulate hydrogen reionization due to stellar sources in
a small cosmological volume. This is a low resolution functionality test only to show
that the two halves of the code are coupled correctly; scientific predictions will require
considerably higher resolution and larger boxes [33].

We simulate 8&\CDM cosmological model with the following parametef}; = 0.7,

Qp =0.04, Qcpm = 0.26, h= 0.7, g = 0.9, where these are, respectively, the fraction

of the closure density in vacuum energy, baryons, and cold dark matter, the Hubble
constant in units of 100 km/s/Mpc, and the variance of matter fluctuations in 8 Mpc
spheres, all measured at the present epoch (z=0). A Gaussian random field is initialized
at z=99 using an initial power spectrum following [34]. The simulation was run in an

8 Mpc comoving box using 84° uniform grid and dark matter particles with periodic
boundary conditions.

The emissivityn was computed using a modified version of the star forma-
tion/feedback recipe of [17], in which the conditions for star formation within a
computational cell require that the loca] have negative divergence (i.e baryons are
contracting), the radiative cooling time is smaller than the dynamical time, angghat
is greater than some threshold (without checking for the Jeans mass). If these criteria
are met a star particle is created which represents an ensemble of stars and becomes a
source of emissivity for the radiation solver. Many particles are created over time and
there may be multiple star particles in a cell. The emissivity of argedl computed as

follows:
t+At

1 o,
n= ETIZ guv \ Msr(t) c=dt (39)

where the sum is over all the star particles in the e¢ad(t) is the star formation rate,



which is an assumed analytic function of time for each partcis,the speed of light,

At is the timestep, andyy an efficiency factor that depends on a number of hidden
parameters including the initial mass function of the star cluster, the stellar spectral
energy distribution, and the ionizing photon escape fraction. For simplicity, we used the
upper value from [16] in its place.

Snapshots from the simulation are created by the analysisytd86] and shown
in Table 2. Here projections through the three dimensional volume are shown for
four redshiftsz = 4.35, 2.55, 1.99 and 0 and three physical quantities: baryonic den-
sity (10910(Pb/ Pavg)), ionization fraction 0g;o(nHii /nH)) and temperaturdgg,oT) in
Kelvin.

The first star particle was createdzat 5.58. At this point, the initially homogeneous
Intergalactic Medium (IGM) had formed filamentry structures as a result of dark matter
clumps. By the first snapshot at= 4.35, the effects of the star can clearly be seen in
the higher ionization fraction in the lower right corner region around the star. This same
region is evident by a brighter peak in the density and temperature.

By z = 2.55, multiple sources have formed and are contributing to the ionizing
radiation. The ionization fronts have also clearly propagated through significantly more
of the domain. Although the ionization fronts are converging, there are still small pockets
where the IGM remains neutral. By inspection, the majority of the IGM is at arouhd 10
K, consistent with expectation. The bright peaks in temperature mark a region with 4
hot stars in close proximity, but the area of neutral IGM remained cooler.

A short while later (on the cosmological scale}at 1.99, there has been little change
in the density structure, but the ionization fronts have passed one other, overlapping
the ionization region. At this point the universe is becoming transparent to ionizing
radiation. Although in this simulation reionization has finished much later than observed
[1], we note that the redshifts at which stars are made by this star maker recipe are
heavily dependent on the box size and spatial resolution of the simulation. A bigger box
size with the same spatial resolution will likely create stars at a much earlier redshift.
Meanwhile, most of the computational volume has reached the same temperature, aside
from the local hot spots around the stars.

Finally atz= 0, the matter has nearly all coalesced due to the gravitational potential
of the high density peaks. This results in large voids of underdensity regions in the IGM,
and at the same time multiple bright spots are converging towards each other. By this
time we see that the universe has been completely ionized (the data shows very small
specks where some HI exists, which may be attributed to recombination). Furthermore,
the temperature plot shows that most of the IGM is actually at a lower temperature than
earlier at reionization. This is due to the adiabatic expansion of the universe, causing
regions far away from the sources of radiation to cool. The brighter temperature region
Is also expanding. This is not due to the photo-ionization of the IGM as before, but is
instead due to collisional heating from infall onto the massive dark matter halo, shock
heating the regions around it. In a color plot, it can be seen that the shock front has a
higher temperature than the relaxation area behind the front.

Our box is far too small, and the spatial resolution too low, to describez the
0 structure of the universe accurately. Indeed, density fluctuations with wavelengths
comparable to the box size are going nonlineaz at0, making our solution highly
inaccurate. The sole purpose of continuing the calculation was to test the long term



TABLE 2. Cosmological ionization snapshots: 2D data results from averaging through one direction.
The rows correspond to times= 4.35, 2.55, 1.99, 0; the columns show baryonic density, ionization
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stability of our implicit algorithm. It passed the test.

CONCLUSIONS AND OUTLOOK

The combined code appears to be working as expected and is stable for long execu-
tions. Radiation from star formation fully ionizes the volume, however the redshift of
reionization is delayed due to the low spatial resolution which underestimates the star
formtion rate. Higher resolution runs and larger box sizes are planned in the near fu-
ture. As discussed in [7] our radiation solver is optimally scalable with respect to the
number of radiation sources, the number of grid points, and the number of processors.



Moreover, the timesteps for the radiation-ionization kinetics portion of the calculation
Is independent of resolution because of the implicit time differencing. This is not the
case for explicit cosmological dynamics, which means that at some grid size the radia-
tion portion of the calculation will cease to dominate the runtime cost. We have not yet
determined where this crossover occurs, but are investigating the matter.

Several extensions of the method are under development. The first is multigroup
FLD for a more accurate representation of the transport of hard UV and X-ray photons
and helium ionization. A second is replacing the FLD ansatz with the variable tensor
Eddington factor method used in [36]. This will improve the angular description of the
radiation field and allow for shadowing effects.

Finally, there is extending the radiation-ionization kinetics solver to adaptive mesh
refinement. There are two components in this solver that depend on the spatial mesh.
The first of these is the solver for the Schur complement subsystem. The part of the
current solver for this component that currently depends on a uniform spatial mesh is the
geometric multigrid solver that is used to precondition the conjugate gradient iteration.
In extending the approach outlined here to spatially adaptive meshes, this geometric
multigrid solver may be replaced with a Fast Adaptive Composite (FAC) method that
understands the overall composite mesh that is formed out of a nested hierarchy of
uniform grids of different spatial resolution.

The second component that depends on a uniform spatial mesh is the rather straight
forward operator-splitting approach coupling the explicit and implicit sub-solvers. Due
to the mesh-dependent CFL stability restriction, the explicit solvers employ time subcy-
cling on the composite mesh, wherein more highly refined grids use smaller time steps
than their larger counterparts, synchronizing with one another only at the time step of the
coarsest grid. The implicit solver, however, naturally couples all of these levels together
at once. Therefore in extending these solvers to AMR, we plan to examine the proper
operator-splitting strategy for coupling these solvers together, attempting to balance a
need for accuracy and consistency (use a full implicit solve every subcycled time step)
with a need for efficiency (use a full implicit solve only at the coarsest grid time step).
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