
Enzo Homework

Preliminaries

Through this tutorial and homework, we’re going to explore different aspects of running Enzo simulations
as well as analyzing them and digging into data using yt. Both Enzo and yt have documentation online:

• http://lca.ucsd.edu/projects/enzo/wiki/UserGuide

• http://yt.enzotools.org/doc/

as well as attendant websites:

• http://lca.ucsd.edu/projects/enzo/wiki/

• http://yt.enzotools.org/

where many different aspects of their use and extension can be found. For the most part, links to
relevant sections have been provided within this document, but you should feel free to explore both sets
of documentation.

Before we can get started, we need to ensure that a working Enzo and yt installation are set up. For
the purposes of the workshop, we’re going to try to rely on an installation of Enzo and yt on Apollo so
that we can maximize our time exploring and experimenting.

Installing Enzo

If, however, you would like to install Enzo, there are a couple ways, and we’ll provide some hints to doing
so. Specifically, if you’re going to run on a cluster or a supercomputing center, it’s almost certainly
much better to use an existing Make.mach file than it is to write your own; the Enzo-1.5 distribution
comes with Makefiles for most major supercomputing installations, and Peter Teuben has provided a
makefile for the Apollo cluster at PiTP.

Information about the Enzo installation procedure is described in detail on the wiki. For the purposes
of the workshop, you will only need enzo.exe, inits.exe and yt. You do not need ring.exe or hop or any
of the other components.

OS X

Attached are statically linked binaries of both enzo.exe and inits.exe for OSX Leopard. It’s recommended
that if you have trouble compiling, you use these.

If you choose to install on OS X, you’re most likely installing on your laptop. The Makefile that
comes with Enzo for OS X (Make.mach.darwin) is designed to be run using binary-packaged Fortran
compilers from http://hpc.sf.net/ and HDF5 compiled without any command line arguments, using the
GNU toolchain and the system installation of OpenMPI.

For OS X, the GNU toolchain is not only sufficient, but probably the best and easiest solution. You
do not need the Intel compilers, any version of MPI other than what OS X provides (and places in
/usr/local/) and any special arguments to the HDF5 compilation.
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Ubuntu

The Make.mach.ubuntu-hardy file describes how to apt-get the necessary packages for Hardy Heron
and should work out of the box.

Installing yt

If you are running and analyzing data on a machine without an existing yt installation (Apollo has
one), unless you are conversant in Python installation and file layouts, using the installer script will
probably be the easiest way to install yt.

There are two, one for Linux and one for OS X. Matt Turk wrote these, and he’ll be more than
happy to help you get yt working. To run the linux installation script::

$ svn export http://svn.enzotools.org/yt/branches/yt-
1.5/doc/install_script.sh
$ nano install_script.sh # turn options on and off
$ bash install_script.sh

The second step lets you turn things on and off. For the most part, leaving the options as in the
default is probably okay.

For OS X, the installation is a bit different as a result of the fundamentally single-user nature of the
OS X ’Framework’ system. This script should work, btu there will be points where it might appear to
hang as .dmg files are mounted and executed.

$ svn export http://svn.enzotools.org/yt/branches/yt-
1.5/doc/install_script_osx.sh
$ nano install_script.sh # turn options on and off
$ bash install_script_osx.sh

Again, the default installation options are probably okay.
When done, yt will say hello and tell you how to start it up. Give it a go and see if you can get the

help screen for the command-line plotter::

$ yt help

Getting Started with Enzo

AMR Sedov Blast

Our first steps with Enzo will be with a relatively simple hydro problem that will demonstrate some of
the things at which Enzo excels. Specifically, we’re going to run a Sedov blast wave in two dimensions
and allow the code to insert higher-resolution grid patches as necessary -- we’re going to watch the
adaptive mesh refinement process.

The Enzo test problem page has a comprehensive list of the test problems that come with Enzo,
including a set of data against which you can compare your own results.

We’ll be running the test problem entitled SedovBlastAMR, which you can find either online on the
Enzo website or in the Enzo distribution at doc/examples/SedovBlastAMR.enzo. This test problem
sets up a Sedov blast starting in the center of a 2D domain (100x100 cells) and allows it to evolve until
roughly the time that it touches the boundary. You should skim the parameter file and look up any
parameters that aren’t clear to you in the Enzo parameter list . This test problem requires no initial
conditions that are not specified in the parameter file. It can be executed on a laptop with::

$ mpirun -np 2 ./enzo.exe SedovBlastAMR.enzo
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But for submission to a queue, the “mpirun -np 2” can be left off and the queueing system will
handle the MPI execution. This test problem takes a few minutes to run to completion on my laptop,
but you can start to see results relatively quickly, as it will output every few cycles.

To plot this data, you can either write and run a script, or use the command-line yt tool with the
’plot’ subcommand. The options available to you are available through the ’--help’ command::

$ yt plot --help

For instance, the attached image was created using the command::

$ yt plot -f Density -a 2 --show-grids DD0004/sb_L2x2_0004

The first argument, ’-f Density’ means to plot the “Density” field. The second means to slice along
the z-axis (axes are 0 for x, 1 for y, 2 for z -- since we’re in a 2D simulation, we’ll always want to
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slice along z.) Finally, we ask yt to show the grid boundaries so we can see where the refinement is
happening, and we tell it the name of the output to plot. Once it’s plotted it, it will save the image to
a png and give you the filename.

Alternatively, scripts that can be run through yt can be written. A simple Python script to do the
above would be as follows::

from yt.mods import *
pf = load("DD0004/sb_L2x2_0004")
pc = PlotCollection(pf, center=[.5, .5, .5])
p = pc.add_slice("Density", 2)
p.modify["grids"]()
pc.save("DD0004")

This is a bit more verbose, but hidden in there is that more complicated things can be done -- for
instance, velocity vectors can be overlaid. (This is a sedov blast, so they are kind of fun to see!) This
would be done with p.modify["velocity"]() )

Collapsing Spheres and Collisions

To extend upon our initial steps experimenting with the Sedov Blast problem, there are a few other test
problems that might be fun. Specifically, the CollapseTest problem will let us explore some fun things
Enzo can do. Even more specifically, it’ll help us take a look at gravity.

We’ll explore CollapseTest in two stages. The first will just set up a moving sphere and allow it to
collapse -- this is the vanilla, standard parameter file CollapseTest that comes with Enzo. This problem
type will set up between 0 and 10 spheres, optionally refined to some higher level, of varying types.
You can give these spheres different characteristics -- velocity, density, temperature -- and then watch
as they collapse under their own weight.

Collapsing in Isolation

You should run with the test problem parameter file first, to get a feel for how long a run will take.
You can watch the sphere collapse to as high a level as you like, which is governed by the MaximumRe-
finementLevel parameter in the parameter file. Note also that the parameter governing frequency of
data output (dtDataDump) is set quite high in the example parameter file; you might consider dividing
it by ten or even a hundred for more frequent output. Additionally, note that the parameter TopGrid-
Dimensions is set to only 16ˆ3. Feel free to change this to something higher -- 64ˆ3 should still run
quite comfortably on a laptop.

The attached parameter file CollapseTest.enzo, which is taken from the Enzo distribution, will
run this test. Plot this and see how it looks!

Collapsing and Collisions

The next stage will be to add a second sphere, and see if you can get them to run into each other.
An example parameter file for doing this has been attached (SphereCollision.enzo), along with some
plots of the process, but you should feel free to play with the parameter file yourself and explore different
mechanisms and methods for colliding the two spheres. There are a couple tricks, however -- one is that
the refine region in the sample parameter file is confined to the center of the box. Another is that the
maximum refinement level might be a bit too high; perhaps try 4 or 5.

An image has been attached that shows what my modification to this parameter file looks like after
16 outputs, made using the command::

$ yt plot --colormap=bds_highcontrast -z 1e-26 1e-24 -g Density -
f Density \

-p --show-grids DD0016/moving7_0016
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The -p switch means to project, and -g Density means to take the average with a weight of
Density. This helps us to see the average value of our projected quantity along the line of sight. We
also change the colormap and fix the colorbar limits.

Cosmology

Enzo is a fully cosmological hydrodynamic code and has been used to simulate many different cosmo-
logical phenomena -- from the formation of the first stars and galaxies to large scale structure and the
attendant observational implications.

To get started with cosmology in Enzo, we’re going to be doing two sets of cosmological simulations.
The first will be relatively straightforward, with no adaptive mesh refinement. The second will being
with nested initial conditions and will follow structure formation to several levels of refinement.
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Unigrid

The first calculation we will perform will be a so-called ’unigrid’ calculation. The initial conditions are
generated at a uniform, fixed resolution, and Enzo will not add higher-resolution elements.

To start, we have provided some sample parameter files for both inits and enzo. (UnigridCosmologySimulation.inits
and UnigridCosmologySimulation.enzo.) Inits is the Enzo cosmological initial conditions generator,
which accepts specifications for the power spectrum, a random seed and some physical characterics of
the generated initial conditions. We’ll be generating a 64ˆ3 simulation. You should feel free to choose
a random seed -- 10 digits, negative (which happens to be the length of a phone number!) -- that will
determine the initial seed from which the simulation will be generated.

The file UnigridCosmologySimulation.inits is a good starting place. Be sure to modify the
random seed and to choose a length scale for the calculation; the default here is 4 Mpc, but you might
find you’re interested in larger scales.

To run inits, you just have to execute it as follows::

$ ./inits.exe -d UnigridCosmologySimulation.inits

This simulation will output quite a bit of data -- on the order of 2.0 gigabytes. These will be
separated into “DataDumps” (DD) and “RedshiftDumps” (RD). Redshift-based output is triggered by
the reaching of a given redshift by Enzo; datadumps are triggered by a fixed amount of time. These are
governed by the parameters CosmologyOutputRedshift[N] where N is some integer and the parameter
dtDataDump= some float value. The value for dtDataDump is in code units of time; code units of time
are generated by a combination of various parameters, described on the Enzo wiki. For a 4.0 Mpc box
with roughly LCDM parameters, 1.0 corresponds to about 20 million years.

Attached is a movie generated with yt, using some slightly more advanced techniques, such as
adding an annotation to the plot to show the current redshift. (This was generated with outputs
taken every 40 million years or so.) The script that created the frames for this movie is called anno-
tate_projections.py and can simply be run inside your simulation directory.

yt has a built in halo finder; you can use this from the command line by running::

$ yt hop RD0009/RD0009

(or on any parameter file, not just RD0009) and it will run the halo finder “hop” and output the
results in a text file. The halo finder in yt also presents and object-interface, so more complicated
analysis can be performed. (To see an example of this, check the yt documentation.)

Nested-Grid

We’ll now try running a nested grid calculation, where we initialize our domain with a second, higher-
resolution grid embedded in the coarse grid. Additionally, we will allow our calculation to refine.
Because of the increased time that this simulation will take to run, along with the increased memory
requirements, it will have to be run on multiple processors, with increased memory requirements. Either
four or eight processors should work, but if you have access to sixteen it should be able to domain
decompose very well across that number. Note that to help with computational time, I’ve increased the
box size by a factor of ten. This reduces the overhead from the Courant condition, and allows the code
to take bigger timesteps.

Some parameter files have been provided (AMRCosmologySimulation_2L.enzo for the enzo param-
eter file, and AMRCosmologySimulation_L0.inits and AMRCosmologySimulation_L1.inits for inits.)
Note that the generation of nested initial conditions can be a bit tricky; we don’t do any recentering
here, but if you wanted to, you’d have to familiarize yourself with the Enzo inits parameter file format.
Also,if you use my initial condition, there’s no real halo of consequence inside the nested grid. (Bonus
problem: run once at unigrid, center on the most massive halo using inits parameters.) So recentering
or choosing a different random seed might be extremely useful.

To generate our initial conditions, we have to tell inits that we are running a nested-grid calculation
-- this ensures that our particles are not duplicated on multiple levels. We can run inits with::
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$ ./inits.exe -d -
s AMRCosmologySimulation_L1.inits AMRCosmologySimulation_L0.inits
$ ./inits.exe -d AMRCosmologySimulation_L1.inits

The first should run relatively quickly, and the second might take a minute or two. For more infor-
mation about inits and how to run it, along with how to set up inits parameter files, see RunningInits.
The parameter files supplied generate a topgrid of 128ˆ3 cells and particles, and then a centered, nested
grid of 96ˆ3 cells and particles.

Using the attached parameter file AMRCosmologySimulation_2L.enzo, run Enzo on this set of initial
conditions. If you run on 4 processors, it will probably take a couple hours -- but the problem should
scale nicely, if you’d like to run on more. If you’d like to add another level of refinement, or change the
size of the nested grid, the Enzo wiki has more information about how to write nested-grid parameter
files.

Once done, we’re going to start flexing our analysis muscles. Here are a list of things you might feel
like examining, all of which can be done with yt.

• How does the halo mass function evolve with redshift?

• At the final output, what percentage of the baryonic material in the box is enclosed in
halos?

• How does the ionization fraction (HII Fraction) evolve with redshift?

• Does this change if only material inside halos contributes to the average?

(For some of these, you might find some hints in yt recipes that have yet to be integrated into the
main documentation at http://hg.enzotools.org/cookbook/ )

There are many more quantities and studies that can be conducted, even on this simple problem
set. Explore!

Appendix: yt tricks

yt is written in Python, which means it’s very easy to extend and builds on a large base of packages.
As a result, there are some fun features in yt that you might enjoy.

The Pastebin

Often, when running into errors, the error message must be copied and pasted between the user and
the developer or mailing list. yt will automatically paste error messages, if you ask it to, to a pastebin
(http://paste.enzotools.org/). Just supply the --paste option on the command line.

Physical Regions

yt is structured around the idea of identify physical regions and then performing analysis on them. This
means you can grab a ’sphere’ of data centered on a point and examine it; you can grab a cylinder,
a rectangular prism, a ray, and several other types of data as well. But, in addition to this, you can
extract subsets of these regions -- and then join subsets together, too.

Clump Finding

With yt, connected sets can be identified. This enables the location and analysis of a hierarchy of
clumps; in star formation, for instance, this allows the construction of diagrams describing the density
at which fragmentation occurs.
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