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Homework problems on geometric integration – PiTP 2009

1. A particle orbiting in a spherically symmetric potential conserves its angular momentum

per unit mass L = r× v and therefore remains on a surface of constant angular momentum

in phase space. Do the modified Euler and leapfrog integrators conserve this geometric

property? Does the Runge-Kutta integrator?

2. Write code to follow the motion of a test particle orbiting a point mass M , with semi-

major axis a and eccentricity e, using two different integrators: fourth-order Runge-Kutta

and leapfrog. You may assume that the motion is in the x-y plane and that the orbit starts

from apocenter, so the initial conditions are

x = a(1 + e), y = 0, vx = 0, vy =

[

GM(1 − e)

a(1 + e)

]1/2

.

The motion is to be followed for N orbital periods, where the period is 2π(a3/GM)1/2. The

energy and angular momentum are

E = 1

2
(v2

x + v2

y) −
GM

r
, L = xvy − yvx.

The output should contain the maximum fractional error in energy and angular momentum,

|∆Emax/E| and |∆Lmax/L| and the total number of force evaluations.

The results should be independent of the parameters G, M , and a so you can choose

these to be unity. For N = 104, plot |∆Emax/E| and |∆Lmax/L| as a function of the number

of force evaluations per orbit for both Runge-Kutta and leapfrog. Do this for eccentricity

e = 0.5, 0.9, 0.99 and 0.999. Compare the performance of the two integrators as a function

of eccentricity.

3. Using the MERCURY software package (http://www.arm.ac.uk/ jec/home.html) in-

tegrate the orbits of the four outer planets (Jupiter, Saturn, Uranus, Neptune) and Pluto

from the present time, for 106 years into the future. Plot the positions of the planets at

100 yr intervals in two ways: (a) in an inertial frame centered on the Sun; (b) in a frame

centered on the Sun that rotates with Neptune. The curious shape of Pluto’s orbit in (b)

arises because it is in a 3:2 resonance with Neptune.

Some hints on using MERCURY: The package offers several integration methods, only

two of which are symplectic: mvs (the Wisdom-Holman integrator) and hybrid (Wisdom-

Holman except during close encounters, but there should be no close encounters during this

integration). For these integrators a timestep of 40 days should work fine. You may use the

initial conditions in the file big.in after editing out the inner planets, and you will want to
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remove the comet initial conditions in small.in. Note that the files *.out, *.dmp, and *.tmp

must be removed before starting a new run.

4. We argued in the lecture that leapfrog with fixed timestep h is symplectic, but leapfrog

with a timestep that depends on phase-space position, h(r,v), is generally not symplectic.

(a) Suppose that we run leapfrog with a variable timestep that is specified in advance, i.e.

the nth timestep hn is taken from a table prepared in advance. Show that this method is

symplectic. (b) Suppose that we run leapfrog once with a timestep hn = h(x,v) that is

determined by the phase-space position, store the set of hn in a table, and then use these to

run leapfrog again from the same initial conditions. According to the arguments above, the

first run is not symplectic but the second one is; but the output of the two integrations is

identical. What is the resolution to this apparent paradox?


