
PiTP 2009 Stone’s Homework Problems

1. Diffusion versus dispersion errors. Implement the Lax-Friedrichs, Lax-Wendroff, and
first order upwind methods for solving the scalar advection equation,

ut + aux = 0 (1)

in one dimension. Evolve a discontinuous initial condition (u0 = 1 for |x| < 1, u0 = 0
otherwise) on the domian −2 < x < 2 using periodic boundary conditions and 100 grid
points to time 20 using a = 1. Plot the resulting solutions for a CFL number of 1.0, 0.8, and
0.5. Discuss.

2. Linear Wave Convergence. Download and install the Athena3.1 MHD code. There is
a User’s Manual for the code in the /doc directory which you can read to learn the basics
of how to use Athena. Test your installation by running configure and then make all and
make test; the code should run successfully and print a small number.

Now trying running a linear wave convergence test. Configure the code with configure

--with-order=3 --with-flux=roe --with-problem=linear wave1d and then compile with
make all. (you should always use make clean before configuring and compiling the code
for new problems). This will generate an executable in the directory /bin. The input file
for 1D MHD linear wave convergence problems is /tst/1D-mhd/athinput.linear wave1d.
There is a script in the same directory which can be used to run multiple jobs at different
resolutions. Edit the script to run only “wave” 0 (the left-going fast magnetosonic wave)
for resolutions up to 1024. Note that with Athena any parameter value in the input file can
be changed at run time using the command line, and this script exploits this feature. The
L1 error norm is printed in a file in the directory tmpdir.LinWave when the script is run,
located in the same directory as the script. Plot the error versus resolution and measure the
convergence rate.

If you have time, try playing with other parameters (e.g. use “wave” 6, the right-going fast
magnetosonic wave, which should be identical to the above results). Also try configuring
the code with order=2, and/or flux=hlld to see how different orders of reconstruction or
different Riemann solvers affect the error.

The problem generator for this test is in /src/prob/linear wave1d.c, feel free to browse
the source code to see how this problem is set up.

3. Wave Steepening. It is easiest to study the formation of shocks in hydrodynamics. Re-
configure the code with configure --with-order=3 --with-flux=roe --with-gas=hydro

--with-problem=linear wave1d, and then compile the code. Using the input file in
/tst/1D-hydro/linear wave1d, edit the wave amplitude in the <problem> input block to
be 0.1. Run the problem, and use the .tab files to plot the profile of the density. How long
does it take for the initially smooth sinusoidal density profile to steepen into shocks?

If you have time, try running the same test in 2D. Be sure to specify the linear wave2d

problem generator in the configure steps, and /tst/2D-hydro/athinput.linear wave2d as
the input file. This problem generator will produce a series of .ppm images, which you can
display as a movie using, for example, the animate command in ImageMagick. You’ll have



to change the maximum and minimum density in the <output3> block in the input file to
values closer to the extrema produced for this run; try using 2.0 and 1/2 respectively.

4. Riemann problems (shock tube tests) Try running the Brio & Wu MHD shock tube
test by configuring the code with configure --with-problem=shkset1d --with-order=3

--with-flux=roe. Use the input file /tst/1D-mhd/athinput.brio-wu. Plot the density,
pressure, and all components of the magnetic field and velocity (if you are using IDL, there
is a useful procedure in /vis/idl/pltath.pro for this task). Then try running the same
test with 1st order and 2nd order reconstruction (remember you’ll have to reconfigure and
recompile the code for each test). Plot the density at the final time for each order of
reconstruction (first, second, and third) on the same plot and compare.

Then try running the Brio & Wu shocktube in 2D. In this case, the 1D planar shock front
propagates at an oblique angle to the grid. Configure with configure --with-order=3

--with-flux=roe --with-problem=shkset2d. You’ll have to edit the 1D input file to use
a 2D domain of size 1 × 0.5 and to use N × N/2 grid cells. You probably won’t have the
patience to use N = 800, but using the largest resolution you can and try comparing the
profile in an x−slice from the 2D data to the 1D result. Note how much more complicated
the source code for Riemann problems run in 2D is compared to the 1D case. Keeping
∇ · B = 0 is trivial in 1D, but is a serious issue in multidimensions. Running planar shock
tube tests at an oblique angle in 2D such as the above helps investigate such issues, but it
requires ∇ ·B = 0 in the initial conditions, which makes the problem generator non-trivial.
By the way, the field loops advection tests described in the Athena method papers (run by
configuring with --with-problem=field loop) are a much better test of whether the MHD
algorithm preserves the divergence-free constraint. In particular, if a transverse velocity is
added along the axis of the field loop, the out of plane component of B must remain zero.
For reasons described in the method papers, this is quite difficult to achieve numerically,
although the CT algorithm in Athena is able to pass this test.

5. Shocks in multidimensions. You can learn much from watching the evolution of
shocks in multidimensions. One interesting problem is the double Mach reflection test
shown in the lectures (you can run this test using the dmr.c problem generator, and the
/tst/2D-hydro/athinput.dmr input file). However, we will study shock-cloud interaction
in 2D hydrodynamics instead. This problem consists of a Mach 10 planar shock which over-
runs a sphere (actually, an infinite cylinder in 2D) with a density 10 times larger then the
background. Configure the code with
configure --with-order=3 --with-flux=roe --with-gas=hydro --with-problem=shk cloud.
Run the problem using the /tst/2D-hydro/athinput.shk cloud. Animate the resulting
density (.ppm) images and see what happens. Try increasing the resolution as much as you
can afford and see how this affects the dynamics, and dump movies of the other variables
(especially useful is the pressure) by adding more <output> blocks to the input file using
the .ppm image format. At early times, you should be able to identify the reflected and
transmitted shocks near the leading edge of the clouds. At later times, the incident shock
refracts around the cloud and interacts with itself, producing strong vorticity. At even later
times the cloud is shredded by instabilities as it is advected off the grid. See if you can spot
all these features.



6. Kelvin-Helmholtz instability Our final homeowork problem is the nonlinear evolution
of a classic fluid dynamical instability, the KHI. It is produced by certain types of shear
layers in a fluid. Often the instability is studied for a slip-surface (discontinuous shear
layer), for example see the tests on the Athena web pages. However, in this case there
is no length scale in the problem, and the fastest growing modes are at the grid spacing.
Instead, we will study the KHI in a shear layer of finite (resolved) width, using a single mode
perturbation. Configure the code with configure --with-problem=kh --with-order=3

--with-flux=roe --with-nscalars=1, and use the input file /tst/2D-mhd/athinput.kh.
The last configure option adds one passive scalar to the evolution, which can be used to
track the two layers. Running the code will produce images of two variables, the transverse
velocity and this scalar variable (labelled “C”). Watch movies of these images to follow the
growth and nonlinear saturation of the instability. To be more quantitative, plot the time
evolution of the logarithm of the kinetic energy in the transverse component of the velocity
(which is dumped in the “history” file, kh.hst). Use the slope of the line at early times to
measure the growth rate in the linear regime. Does it agree with analytic theory?

7. Applications. It is very easy to run Athena in parallel by adding the --enable-mpi

option to the configure step, and by adding the appropriate paths to the MPI library installed
on your machine using the Makeoptions.in file. As time permits, feel free to play with
running larger versions of the above problems in 3D using MPI and any parallel cluster to
which you have access. You’ll have to add a <parallel> block to the input file you use to
control the MPI decomposition. There are many problem generators and input files to try,
but one good one is the shock-cloud test we ran above. The User’s Manual can give you
hints on tools to look at the data in 3D (for example, VisIt). This problem is only for those
who are interested and want to move beyond 2D tests run on serial processors.


