N Rigid-body Dynamics
 Derek C. Richardson
 University of Maryland

With:

Patrick Michel (Obs. Côte d'Azur)
Randall Perrine (UMd)
Stephen Schwartz (UMd)
Kevin Walsh (Obs. Côte d'Azur)

Very Brief Outline

- CollisionAL systems
- With real collisions!
- Simulating sphere-sphere collisions
- Methods and complications.
- Simulating (non-spherical) rigid bodies
- Methods and applications.
- New directions
- Cohesion, granular dynamics, etc.

REVIEW: Richardson et al. 2009, P\&SS 57, 183

Collisional Systems

- Here we are concerned not only with close gravitational encounters, but also physical collisions: $\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|=s_{i}+s_{j}$.
- In astrophysics, usually restricted to planetary dynamics:
- Planet formation (planetesimal accretion).
- Planetary rings.
- Granular dynamics.

Physical Collisions in Astrophysics

- Planetesimal accretion
- Gravity + collisions involving rigid particles or groups of rigid particles with some dissipation law and possible fragmentation, etc.

Leinhardt et al. 2000, Icarus I46, I 33

Physical Collisions in Astrophysics

- Planetary rings
- Gravity + collisions in tidal field of a planet, with dissipation and possible sticking and/or fragmentation.

Ring patch with embedded moonlet

Tiscareno et al. 2006,
Nature 440, 648

Physical Collisions in Astrophysics

- Granular dynamics
- Collisions in uniform gravity field, usually with bouncing only, but possibly with sticky "walls."
- Applications: regolith motion, sample return.

Physical Collisions in Astrophysics

- Granular dynamics
- Collisions in uniform gravity field, usually with bouncing only, but possibly with sticky "walls."
- Applications: regolith motion, sample return.

Rubble is out there...

Rubble is out there...

Rubble is out there...

Image courtesy JAXA/ISIS

Rubble is out there...

Rubble is out there...

Collisional systems

- ADVANTAGES:
I. No singularities.

Particles touch before $|\mathbf{r}| \rightarrow 0$. No softening!
2. Minimum (gravitational) timestep bounded.

- $h=\eta /(G \rho)^{1 / 2}, \rho=$ maximum density, $\eta \sim 0.03$.
- CHALLENGE:
- Need to predict when collisions occur (or deal with them after the fact), therefore need efficient neighbor-finding algorithm.

Sphere-sphere Equations of Motion

- Same as for point particles:

$$
\ddot{\mathbf{r}}_{i}=-\sum_{j \neq i} \frac{G m_{j}\left(\mathbf{r}_{i}-\mathbf{r}_{j}\right)}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|^{3}}
$$

- Can use any standard ordinary differential equation integrator (see Scott's talk!).
- Turns out $2^{\text {nd }}$-order leapfrog is particularly advantageous.

Second-order Leapfrog

- Kick-drift-kick (KDK) scheme:

$$
\begin{aligned}
& \dot{\mathbf{r}}_{i n+1 / 2}=\dot{\mathbf{r}}_{i, n}+(h / 2) \dot{\mathbf{r}}_{i, n} \quad \text { "kick", } \\
& \mathbf{r}_{i, n+1}=\mathbf{r}_{i, n}+h \dot{\mathbf{r}}_{i, n+1 / 2} \text { "drift", } \\
& \dot{\mathbf{r}}_{i, n+1}=\dot{\mathbf{r}}_{i, n+1 / 2}+(h / 2) \dot{\mathbf{r}}_{i, n+1} \quad \text { "kick", }
\end{aligned}
$$

- Notice the drift is linear in the velocities -exploit this to search for collisions.

Collision Prediction

$$
\begin{aligned}
& \mathbf{r}=\mathbf{r}_{2}-\mathbf{r}_{1} \\
& \mathbf{v}=\mathbf{v}_{2}-\mathbf{v}_{1}
\end{aligned}
$$

Collision condition at time t :

$$
v^{2} t^{2}+2(\mathbf{r} \cdot \mathbf{v}) t+r^{2}=\left(s_{1}+s_{2}\right)^{2}
$$

Solve for t (take smallest positive root):

$$
t=\frac{-(\mathbf{r} \cdot \mathbf{v}) \pm \sqrt{(\mathbf{r} \cdot \mathbf{v})^{2}-\left[r^{2}-\left(s_{1}+s_{2}\right)^{2}\right] v^{2}}}{v^{2}}
$$

Neighbor Finding

- To check all particle pairs for possible collision carries the same penalty as direct force summation: $O\left(N^{2}\right)$.
- Instead, take advantage of the hierarchical nature of a tree code to reduce the neighbor search to $O\left(N_{s} \log N\right)$, where N_{s}
$=$ number of neighbors to find.
- This is equivalent to what is needed for an SPH "gather" step.

Some words about pkdgrav/gasoline

- First developed at UWashington, this is a parallel, hierarchical gravity solver for problems ranging from cosmology to planetary science.
- "Parallel k-D Gravity code" = pkdgrav.
- Gasoline is pkdgrav with SPH.
- Not released into the public domain (yet).
- If you're interested in using it, see me!

Spatial Binary Tree

k-D Tree

$k-D$ with Squeeze

Tree Walking

- Construct particle-particle and particlecell interaction lists from top down.
- Define opening ball (based on critical opening angle θ) to test for ball-bucket intersection.
- If bucket outside ball, apply multipole (c-list).
- Otherwise open cell and test its children, etc., until leaves reached (which go on p-list).
- Nearby cells have similar lists: amortize.

Tree Walking

Note multipole Q acceptable to all particles in cell d.

Other Issues

- Multipole expansion order.
- Use hexadecapole (best bang for buck).
- Force softening (for cosmology).
- Use spline-softened gravity kernel.
- Periodic boundary conditions.
- Ewald summation technique available.
- Time steps.
- Multistepping available (adaptive leapfrog).

Parallel Implementation

- Master layer (serial).
- Controls overall flow of program.
- Processor Set Tree (PST) layer (parallel).
- Assigns tasks to processors.
- Parallel $k-D$ (PKD) layer (serial).
- MIMD execution of tasks on each processor.
- Machine-dependent Layer (MDL, separate set of functions).
- Interface to parallel primitives.

Domain Decomposition

Binary tree balanced by work factors. Nodes construct local trees.

Scaling at Fixed Accuracy

T3E Science Rate vs. Number of Processors (Dec 2000)

Clustered cosmology simulation
($\mathrm{N}=3 \cdot 10^{6}$)
($\theta=0.8$)

Back to collisions...

- How many neighbors to search?
- Close-packed equal-size spheres have a maximum of 12 touching neighbors.
- For less-packed situations, only concern is a more distant fast-moving particle.
- Typically use $N_{s} \sim 16-32$, with h small enough to ensure no surprises.
- Can also search for all neighbors within a fixed ball radius (e.g. $R=3 v h$), but can end up with many more neighbors to check.

Collision Resolution

Post-collision velocities and spins:

$$
\begin{aligned}
\boldsymbol{v}_{1}^{\prime} & =\boldsymbol{v}_{1}+\frac{m_{2}}{M}\left[\left(1+\epsilon_{n}\right) \boldsymbol{u}_{n}+\beta\left(1-\epsilon_{t}\right) \boldsymbol{u}_{t}\right] \\
\boldsymbol{v}_{2}^{\prime} & =\boldsymbol{v}_{2}-\frac{m_{1}}{M}\left[\left(1+\epsilon_{n}\right) \boldsymbol{u}_{n}+\beta\left(1-\epsilon_{t}\right) \boldsymbol{u}_{t}\right] \\
\omega_{1}^{\prime} & =\omega_{1}+\beta \frac{\mu}{I_{1}}\left(1-\epsilon_{t}\right)\left(s_{1} \times \boldsymbol{u}\right), \\
\omega_{2}^{\prime} & =\omega_{2}-\beta \frac{\mu}{I_{2}}\left(1-\epsilon_{t}\right)\left(s_{2} \times \boldsymbol{u}\right),
\end{aligned}
$$

where:

$$
\begin{aligned}
& M=m_{1}+m_{2}, \mu=m_{1} m_{2} / M, \boldsymbol{u}=\boldsymbol{v}+\boldsymbol{\sigma}, \hat{\boldsymbol{n}}=\boldsymbol{r} / r, \boldsymbol{u}_{n}= \\
& (\boldsymbol{u} \bullet \hat{\boldsymbol{n}}) \hat{\boldsymbol{n}}, \boldsymbol{u}_{t}=\boldsymbol{u}-\boldsymbol{u}_{n}, \boldsymbol{s}_{1}=s_{1} \hat{\boldsymbol{n}}, \boldsymbol{s}_{2}=-s_{2} \hat{\boldsymbol{n}}, \boldsymbol{\sigma}_{i}=\boldsymbol{\omega}_{i} \times \boldsymbol{s}_{i}, \\
& \boldsymbol{\sigma}=\boldsymbol{\sigma}_{2}-\boldsymbol{\sigma}_{1}, \beta=2 / 7 \text { for spheres, and } I_{i}=(2 / 5) m_{i} R^{2} .
\end{aligned}
$$

What about $\varepsilon_{n} \& \varepsilon_{t}$?

What about $\varepsilon_{n} \& \varepsilon_{t}$?

What about ε_{n} \& ε_{t} ?

Collision Handling in Parallel

- Each processor checks its particles for next collision during current drift interval (could involve off-processor particle).
- Master determines which collision goes next and allows it to be carried out.
- Check whether any future collision circumstances changed.
- Repeat until all collisions occurring within this drift step resolved.

Complications

- The "restitution" model of billiard-ball collisions is only an approximation of what really happens.
- Collisions are treated as instantaneous (no flexing) and single-point contact.
- This leads to problems:
- Inelastic collapse.
- Missed collisions due to round-off error.

Inelastic Collapse

- A rigid ball bouncing on a rigid flat surface must come to rest, but in the restitution model this requires an infinite number of increasingly smaller bounces to occur in a finite time (Zeno's paradox!).

Could also occur
between 2 self-
gravitating
spheres in free space.

Inelastic Collapse

- How to fix it?
- Impose minimum impact speed $v_{\text {min }}$ below which $\varepsilon_{n} \rightarrow 1$ (no dissipation).
- Choose $v_{\text {min }}$ so that this "vibration energy" is small compared to energy regimes of interest.
- Petit \& Hénon 1987a "sliding phase."
- OR, force particles/surfaces to come to rest with one another-but this causes other complications, especially with self-gravity.
- Requires introducing surface normal forces.

Inelastic Collapse

- Can occur in other circumstances, even without gravity, e.g.

For collapse to occur, the matrix must have at least one real eigenvalue between $0 \& 1$. This is satisfied if $0<\epsilon<7-4 \sqrt{3}(\sim 0.072)$.

Inelastic Collapse, continued

- Previous example was in 1-D, but problem occurs in 2-\& 3-D as well.
- Crucially, as $N \rightarrow \infty, \varepsilon_{n, \text { crit }} \rightarrow 1$!
- How to fix it?
- If distance travelled since last collision small (factor $f_{\text {crit }}$) compared to the particle radius, set $\varepsilon_{n}=1$ for next collision (typically $f_{\text {crit }} \sim 10^{-6}-10^{-3}$).
- Other strategy (not implemented): store some fraction of impact energy as internal vibration to be released stochastically.

Round-off Error and Overlaps

- Despite precautions, if there are many collisions between many particles in a timestep, round-off error can cause a collision to be missed.
- In this case, some particles may be overlapping at start of next step.
- Minimize by good choices of $h, v_{\min }$, and $f_{\text {crit }}$.
- But sometimes that's not enough...

Round-off Error and Overlaps

- Overlap handling strategies:
- Abort with error (default).
- Trace particles back in time until touching.
- Push particles directly away until touching.
- Merge particles (if merging enabled).
- Apply repulsive force.
- For single particles, trace-back is best. For rigid bodies, repulsive force is best.

Finally, Rigid Bodies!

- Spheres are a special (easy, ideal) case.
- Perfect spheres are rarely encountered in nature, and may give misleading results when used to model granular flow, aggregation in planetary rings, etc.
- Simplest generalization: allow spheres to stick together in more complex shapes ("bonded aggregates"). Advantages:
- Can still use tree code for gravity \& collisions.
- Collisions are still sphere point-contact.

Rigid Body Gravity Torques

Euler's Equations of Rigid Body Rotation

$$
\begin{aligned}
& I_{1} \dot{\omega}_{1}-\omega_{2} \omega_{3}\left(I_{2}-I_{3}\right)=N_{1} \\
& I_{2} \dot{\omega}_{2}-\omega_{3} \omega_{1}\left(I_{3}-I_{1}\right)=N_{2} \\
& I_{3} \dot{\omega}_{3}-\omega_{1} \omega_{2}\left(I_{1}-I_{2}\right)=N_{3}
\end{aligned}
$$

where I_{i}, ω_{i} are principal moments and body spin components, respectively, and \mathbf{N} is the external torque expressed in the body frame.

Euler's Equations of Rigid Body

Rotation

- Previous equations represent a set of coupled ODEs that evolve the spin axis in the body frame. Need 3 more vector equations to evolve body orientation:

$$
\begin{aligned}
& \dot{\hat{\mathbf{p}}}_{1}=\omega_{3} \hat{\mathbf{p}}_{2}-\omega_{2} \hat{\mathbf{p}}_{3}, \\
& \dot{\hat{\mathbf{p}}}_{2}=\omega_{1} \hat{\mathbf{p}}_{3}-\omega_{3} \hat{\mathbf{p}}_{1}, \\
& \dot{\hat{\mathbf{p}}}_{3}=\omega_{2} \hat{\mathbf{p}}_{1}-\omega_{1} \hat{\mathbf{p}}_{2},
\end{aligned}
$$

where $\hat{\boldsymbol{p}}_{i}$ are the principal axes of the body.

Euler's Equations of Rigid Body

Rotation

- The moments of inertia (eigenvalues) and principal axes (eigenvectors) are found by diagonalizing the inertia tensor-only need to do this when particles added to/ removed from aggregate.
- Solve this set of 12 coupled ODEs any way you like (up to next collision, or end of drift). I use a fifth-order adaptive Runge-Kutta (for strongly interactive systems, dissipation not a concern).

For Completeness

- Inertia tensor:

$$
\mathbf{I}_{\mathrm{agg}}=\sum_{i}\left[\mathbf{I}_{i}+m_{i}\left(\boldsymbol{\rho}_{i}^{2} \mathbf{1}-\boldsymbol{\rho}_{i} \boldsymbol{\rho}_{i}\right)\right]
$$

with $\mathbf{I}_{i}=\frac{2}{5} m_{i} R_{i}^{2} \mathbf{1}$ and $\boldsymbol{\rho}_{i}=\mathbf{r}_{i}-\mathbf{r}_{a}$

- Torques:

$$
\mathbf{N}=\boldsymbol{\Lambda}^{\mathrm{T}}\left[\sum_{i \in a} m_{i}\left(\mathbf{r}_{i}-\mathbf{r}_{a}\right) \times\left(\ddot{\mathbf{r}}_{i}-\ddot{\mathbf{r}}_{a}\right)\right]
$$

where the sum is over all particles in aggregate a and $\boldsymbol{\Lambda} \equiv\left(\hat{\mathbf{p}}_{1}\left|\hat{\mathbf{p}}_{2}\right| \hat{\mathbf{p}}_{3}\right)$

Rigid Body Collisions

- Collision resolution complicated because impacts generally off-axis (non-central).
- Solutions do not permit surface friction.
- However, off-axis collisions cause impulsive torques, allowing transfer of translational motion to rotation, and vice versa.
- Collision prediction also more complicated, due to body rotation.

Collision Prediction \& Resolution

$$
t=\frac{-(\mathbf{r} \cdot \mathbf{u}) \pm \sqrt{(\mathbf{r} \cdot \mathbf{u})^{2}-\left[r^{2}-\left(s_{1}+s_{2}\right)^{2}\right]\left[u^{2}+(\mathbf{r} \cdot \mathbf{q})\right]}}{u^{2}+(\mathbf{r} \cdot \mathbf{q})}
$$

$$
\Delta \mathbf{V}_{1}=\gamma\left(1+\varepsilon_{n}\right)\left(M_{2} / M\right) w_{n} \hat{\mathbf{n}}
$$

$$
\Delta \mathbf{V}_{2}=-\gamma\left(1+\varepsilon_{n}\right)\left(M_{1} / M\right) w_{n} \hat{\mathbf{n}}
$$

$$
\Delta \mathbf{\Omega}_{1}=M_{1} \mathbf{I}_{1}^{-1}\left(\mathbf{c}_{1} \times \Delta \mathbf{V}_{1}\right)
$$

See Richardson et al. 2009 for definitions of terms!

$$
\Delta \mathbf{\Omega}_{2}=M_{2} \mathbf{I}_{2}^{-1}\left(\mathbf{c}_{2} \times \Delta \mathbf{V}_{2}\right)
$$

Bouncing Cubes!

Asteroid Family Formation

Bonded Aggregates in Rings

Homework Exercise

- Posted on the PiTP wiki.
- Basic idea: smash stuff up!

About gravitational aggregates...

- Loose assemblages of coherent pieces held together mostly by gravity.
- May have some cohesion between pieces (tensile strength).
- NOTE: under compression, a gravitational aggregate has shear strength.
- A rubble pile is a special case of a jumbled body with no cohesion.

What about cohesion?

- Lightcurve and radar data show some very small solar system bodies must have tensile strength/cohesion.

What about cohesion?

What about cohesion?

- Upper limits from comets SL9 \& Tempel I $\sim 100 \mathrm{~Pa}$. Essentially no data for asteroids.
- How to model this?
- What is the effect?

Modeling cohesion

- Add simple Hooke's law restoring force between nearby particles.

- Deform elastically up to maximum strain (spring rigidity set by Young's modulus).
- Particles act as tracers of a continuum solid.

These are NOT bonded aggregates!

Example: excessive initial spin

Color legend:

```
green 3 or more springs
yellow 2 springs only
red
no springs left
```

$Y=250 \mathrm{~Pa}, \mathrm{~L}=150 \mathrm{~Pa}$
Spin period $P=0.86 \mathrm{~h}$ Oblate shape $\alpha=0.40$

Failure under tension: slow pull

Failure under tension: fast pull

Failure under shear

Colliding cubes

Colliding cubes-faster!

More on Cohesion

- We are applying these models to rotational disruption simulations (binary asteroid formation) and comparing with laboratory experiments.
- Next step: allow for individual spring strengths in order to model pre-existing weaknesses/fractures, e.g. Weibull distribution of flaws.

Working with Walls

- Asteroid sample return missions are faced with anticipating the behavior of granular material in very weak gravity.
- Want to develop simulations of these regimes, but be able to compare with physical experiments.
- Approach: provide wall "primitives" that can be combined to replicate experimental apparatus.

Particles in an Inclined Cylinder

Taylor-Couette Shear Cell

Taylor-Couette Shear Cell

Naomi Murdoch

Summary

- Physical collisions in N -body codes enabled by neighbor finding and solving collision equations.
- Rigid body mechanics additionally require solving Euler equations and more complex collision prediction and resolution.
- Many applications, ranging from planet formation to granular dynamics.

Extra Slides

Rubble Pile Equilibrium Shapes

$\mathrm{N}=1000,4_{2}=0.8$

Mass loss: $0 \%<10 \%>10 \% \quad X=$ initial condition
Richardson et al. "Modeling Cohesion in
Gravitational Aggregates" (DPS '08 \#55.02)

Rubble Pile Equilibrium Shapes

$\mathrm{N}=1000, \mathrm{~F}_{\mathrm{y}}=0.8$

Mass loss: $0 \%<10 \%>10 \% \quad X=$ initial condition

Oblate, $Y=250, L=150 \mathrm{~Pa}$

Color legend:

green	no mass loss
yellow	$<10 \%$ mass loss
orange	$<50 \%$ mass loss
red	$<90 \%$ mass loss
fuchsia	$\geq 90 \%$ mass loss

Symbol legend:

\times remnant only
\square mass in orbit

* accreting mass
(symbol size proportional to
mass orbiting/accreting)

Damping Oscillations

