
Panel discussion on “Legacy codes in
astrophysics”

tactics (the lecturers)
− the branch of military science dealing with detailed

maneuvers to achieve objectives set by strategy

strategy
− the branch of military science dealing with military command

and the planning and conduct of a war

anecdotes from Peter
complaints
− what are some of the bad features of the codes used in this

school?

• Developing it
– Don’t do it unless you’re

committed to supporting it
– Identify your feature set and

design goals
– Find a meticulous grad and

leave him/her alone
– Encourage “best practices”

coding (exemplars)
– Elegance vs. performance trade-

offs (you can have both. See
http://www.c3.lanl.gov/poosc/)

– Modular design; unit testing
– Verification test suite
– 2-yr to develop; rewrite after 10

• Supporting it
– Don’t expect grant funding

specifically for development
and support (piggy back on
science grants)

– good documentation mitigates
support burden

– Establish user and developer
email lists

– Establish mechanisms for
uptake of user-developed code

– Nightly regression testing
(http://lca.ucsd.edu/projects/lca
test)

NORMAN

Keep it simple
− computational science uses code as a means-to-

an-end; the code is not the end
avoid the temptation of using the newest languages
and/or bleeding-edge features of compilers, forcing the
code to adhere to strict programming paradigms, etc.

− write new code in pieces as small as possible,
thoroughly testing them before continuing to the
next piece

never add a new feature/parameter/etc. that you will not
be able to test and use immediately

PRETORIUS

• Do…
– Use comments. Liberally.

Despite what Brian
Kernighan says. Really.

– When hacking (yes, it
happens), ALWAYS add a
searchable comment, like
/*DEBUG!*/.

– Use #include and make,
even for a simple code.

• Don’t…
– Use global variables. Ever.

This will help you program
in modular style. Trust me.

– Forget to back up your
source code regularly.
Twice. On disks that are far
away from each other.
Preferably in different
countries.

Oh yeah, and when testing, use a soft link to the executable, or force make install…

RICHARDSON

• Keep a record of what you tried. Use a rich text document (or Word, or PPT, etc),
where you can quickly paste a screenshot of the plot window. This is the fastest
way to leave a trace. Try Evernote.com for diary-type notes.

• Use meaningful names for directories, more descriptive than run1/ or even
run35.2/ .

• Don’t be too evangelical. There are much worse things in life than a few global
variables.

• Think before relying on external libraries. You will be recompiling them a lot on
many platforms.

• Explain how to use the code to people and ask your first users to write the user
manual as a wiki. This makes for an amusing and educational read.

SPITKOVSKY

SPRINGEL

Use a highly portable language (C comes to mind), and stick to its standard.

Always compile with “full warnings” (-Wall) enabled, and address all issues until the code
compiles with no warnings.

Use a version control system (e.g. subversion). The repository should be on a server in
your institute that has nightly back-ups.

For science production runs, always create a separate copy of the source code and treat it
as part of the input/output data. This source is part of the simulation, and should not be
changed unless you discard the simulation. (long-term reproducibility!)

Do not rely on compiler optimizations to make your code fast – rather focus on writing
intrinsically efficient code.

Always put in error checks when operating system functions are called, especially for
dynamic memory allocation and I/O.

Use meaningful variable names, and a consistent indention convention.

Difficult code is best written incrementally, interleaved with frequent tests.

This may seem very obvious... work with an editor that does syntax highlighting.

• Modularity: makes extensions to code easier (also think of other codes using some of your
engines; python hooks, e.g. MUSE)
• Ease-of-use:

• adopt portable configuration tools (configure, etc.)
• flexible variety of output files (that don’t depend on external libraries!)
• Input files have intuitive format enabled by special-purpose parser.

• Portability ensured by:
• Strict adherence to ANSI standards (don’t use language extensions!)
• No reliance on external libraries (except when absolutely necessary, e.g. parallelization

with MPI)
• Performance: is memory or cpu (including cache access) limiting factor?
• Testing: regressions testing and test problems (benchmark). Also good to add
benchmark/tracers in your code in DEBUG mode. Handy to have sample data.
• Source Code Management (SCM): SVN with trac integrated very useful. Also handles
dealing user support, e.g. bugs.
• Documentation: Users and/or Programmers Guide. Sometimes self-generated via e.g.
doxygen.

STONE + TEUBEN

“Five Golden Rules of Installing Software”

or:
why can't they just not use some self-extracting and installing binary blurb?

Or:

why don't they just write this for windows?

1. don't stress your sysadmin

RTFM (Read The Friendly Manual)‏
GIYF (Google Is Your Friend)‏

2. Don't read the last error

You should have scrollbars or look at the log file
where the S*&$^@! hit the fan

(t)csh shell: command >& logfile

(ba)sh shell: command > logfile 2>&1

3. Parsing Errors the Right Way

“/usr/bin/ld: cannot find -lfoobar”
− libfoobar.a or libfoobar.so not found or not in the

right path of one of your -L compiler directives
− Use “locate libfoobar” to see if you have it
− Maybe incomplete install (e.g. -devel missing) ‏

(debian) dpkg -S /usr/lib/libfoobar.so
(redhat) rpm -qf /usr/lib/libfoobar.so
(mac) 1-800-eat-apple

4. Environment Variables

$PATH:
$LD_LIBRARY_PATH (linux, solaris) or
$DYLD_LIBRARY_PATH (darwin)‏
$CFLAGS, $FFLAGS
$CC, $CXX, $F77 (configure uses them)‏

5. Unix Commands

ldd
nm
hexdump -C
lfind : alias lfind 'find . -name *\!** -print'
“gcc –version” or “gcc --help”

AnecdotesAnecdotes
(hey, it works for me.....)‏

Space in a directory name: configure really
bombed out with a seeminly innocent statement
(on a mac) incompatible format for .o file: turns
out the intel and gcc compiler were mixed and
matched wrong.
Older version of same library in /usr/local/lib
which now was in /usr/lib; same for headers
ld: command not found. You are probably on
a spanking new mac and did not load Xcode!

Strategic issues
is writing and maintaining a legacy code bad for your career?
what is the right balance between code development and
science?
how do you make sure that your code is widely used?
at what stage should a code be made public?
− should funding agencies require this?

who owns the code?
− the author?
− the employer?
− the funding agency?

is there adequate testing and validation of codes in
astrophysics? If not, how can the situation be fixed?

	Panel discussion on “Legacy codes in astrophysics”
	1. don't stress your sysadmin
	2. Don't read the last error
	3. Parsing Errors the Right Way
	4. Environment Variables
	5. Unix Commands
	Anecdotes�(hey, it works for me.....)‏
	Strategic issues

