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The ADM decomposition

There are two Io?ically distinct steps in

performing a 3+1 decomposition of the field

equations

= (1) The differential geometry “machinery” of how to describe a
d-dimensional subspace in terms of its embedding in a larger
(d+1)-dimensional space

= (2) Applying this decomposition to the Einstein equations

Note: the exact form of the equations that these days
are referred to as the "ADM"” equations are not quite in
the form presented by ADM, rather this is a
reformulation due to J.W. York (in Sources of
Gravitational Radiation, 1978)
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Outline
The ADM (Arnowitt Deser Misner-1962) decomposition

= A “natural” way to separate 4D spacetime into 3D space + 1D
time, which is essential for posing the field equations as in initial
boundary value (Cauchy) problem

cleanly (at least much as is possible in GR) highlights the separation
bet\r:veen the constraints, evolution and gauge degrees of freedom
in the metric

is the starting point for the York-Lichnerowitz procedure for solving
the initial data problem

= this is used to provide consistent initial data with harmonic evolution

is the starting point for the BSSN evolution system

An example in spherical symmetry: the Einstein-Klein-
Gordon system of equations

3+1 splitting of spacetime

Begin by foliating spacetime into a sequence of spacelike
hypersurfaces 5, labelled by a monotonic time scalar function t



3+1 splitting of spacetime

Let n’ denote the unit timelike (n“n,= -1) vector field normal to =

3+1 splitting of spacetime

The proper time interval A r that an observer moving along n” from
t, to t, will measure is just a (,- t,). Since the labeling of the
surfaces by the time function t is arbitrary, one can think of a as
encoding the time-coordinate (or slicing) degree of freedom.

time
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3+1 splitting of spacetime

The one-form n, must be proportional to (minus) the gradient of t :

n,=-ad,t. The (positive) function of proportionality a is called
the /apse function.

=g (- a d,t)

3+1 splitting of spacetime

We are further free to choose any spatial coordinate system on the
hypersurface; in particular the spatial coordinates labeling a point
do not need to flow along nv; i.e, the time flow vector field (9/9t)¢
does not need to be parallel to n’:

%0
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3+1 splitting of spacetime

The spatial vector B’ that describes how the intrinsic coordinates
flow from one time slice relative to the normal is called the shift
vector; the shift vector thus encodes the spatial coordinate degrees
of freedom in the metric.
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3+1 splitting of spacetime

A tensorial object is considered spatial if contraction of any one of
its indices with the normal vector is zero. E.g. the shift vector is
spatial, as is the spatial metric itself:

In the end, we would like to have a set of spatial tensors that
completely characterizes 5, and then from the Einstein equations
obtain the constraints in terms of these objects, and evolution
equations that govern how they evolve in time

= the spatial metric by itself does not by itself provide all this information;
in addition we need to now how 2 is embedded in the higher
dimensional space. The extrinsic curvature tensor K;, also called the
second fundamental form, provides this information.

3+1 splitting of spacetime

The geometry intrinsic to a spatial hmersurface s given by a
metric h;. The relationship between the spatial metric and

spacetime metric is
h/.n/ = g,uv + n;.(nv

or, in terms of the line element

h; also serves as a projection tensor, projecting 4 dimensional
tensorial objects onto the 3 dimensional hypersurface; namely

3+1 splitting of spacetime

The extrinsic curvature tensor K;; is defined as follows, with a sign
convention that gives concave surfaces positive curvature
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3+1 splitting of spacetime

Note that by definition the extrinsic curvature is spatial; a couple of
other important properties include:

1

where £ is the Lie derivative : £,T represents the change of a
tensorial object T advected along a vector field n.

The extrinsic curvature is therefore essentially the “velocity” of the
spatial metric along the normal direction.

Einstein equations in 3+1 form

The derivation involves computing all projections of the Einstein
equations normal and onto the hypersurface 5, and using various
identities from differential dgeometry relating projected 4
dimensional to intrinsic 3 dimensional curvature tensors (in
particular the Gauss-Codazzi and Gauss-Weingarten relations).

= will onIY %ive the final results ... many good references available, in particular
MTW (1973), and York’s 1978 article'in Sources of Gravitational radiation.

First, we need to define the projected stress-energy tensor
components: the energy density o, the momentum flux j', and the
spatial stress tensor S7':
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3+1 splitting of spacetime

“I-lgwever, we are interested in integrating the equations with time

Using (2/dt)? = an’ + B and a linearity property of the Lie
derivative, we can recast the definition of the extrinsic curvature
into the following form:

0.h

t aK,, +‘eﬁhllV

we now have all the elements to completely describe a 4D
geometry in terms of purely spatial geometric objects, namely h;
and K;; , and the gauge functions a and B’

next, we want to see what the Einstein equations look like terms of
these quantities

Einstein equations in 3+1 form

The n“-n“ projection of the EFE gives the Hamiltonian or energy

constraint equation =
PR+K? -K K" =167p

The prefix (3) notation denotes an intrinsic 3-dimensional object, in
this case the Ricci scalar of 5. Kis the trace of the extrinsic
curvature tensor.

The m“-h“¥ projection gives the 3 momentum constraint equations

D,K® -D*K =87°

where D, =00, is spatial covariant derivative operator

Notice that these 4 equations only include spatial objects; i.e. they
are 4 constraints amongst the 12 unique components of h; and Kj;,
imposed by the Einstein equations

= solving the constraints is a non-trivial exercise, in particular since there is no
unique way to define what the freely specifiable vs. constrained degrees of
freedom in h; and K;; are



Einstein equations in 3+1 form

The A“¥ projection of the EFE gives evolution equations for the
extrinsic curvature, and this, together with the definition of Kj;, form
the evolution equations :

+a] R, +K K, —2K K¢ —Sn(sa,, —%(S—p))
d.hy, = £;h, — 20K,

One can show that beginning with initial data that satisfies the
constraints, a specification of the gauge in terms aand 8¢,
imposition of consistent boundary conditions, and coupling to matter
that conserves (convariant? energy and momentum, a solution of
the evolution equations will satisfy the constraint equations for all
time (will demonstrate later with generalized harmonic evolution)

Gravity in Spherical Symmetry

General relativity does not allow any monopole radiation, and thus there
are no gravitational waves in spherical symmetry. Thus, any dynamics in a
spherically symmetric scenario is entirely driven by matter.

As a natural extension to project 1, we will use a massless scalar field ®(r,t)
as the matter source; i.e., now the scalar field back-reacts, and will in fact
be the full source of rivial geometry

= its equation of motion remains the same

0.¢

= and its stress-energy tensor is

1
T, =000 —ngDdeElde
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Einstein equations in 3+1 form

Summary

we have fixed the character of the equations by demanding that 1 coordinate be
timelike and hypersurface orthogonal, the remaining 3 to be spacelike, factoring
out the coordinate degrees of freedom, and choosing the fundamental variables
that will be evolved to be purely spatiai tensors

obtained a coupled hyperbolic/elliptic (/fsome further manipulations of the
constraints are made) system, however the hyperbolic subsystem is generically
only weakly hyperbolic, which can pose problems for numerical integration

furthermore, in 3D scenarios, small violations of the constraints (sourced by
truncation error, for example) tend to grow exponentially with time, making the
ADM form, as is, not too useful for generic evolutions

however, in certain symmetry reduced situations, with appropriate gauges, it is a
perfectly adequate numerical evolution scheme

will look at a spherically symmetric example, which will also be instructive to show that
even though the lapse and shift are usually considered “gauge”, the coupled nature of
the equations don't always allow a clean distinction

Isotropic coordinates

We will use a different system of coordinates than before, namely maximal
[sotropic coordinates.

In isotropic coordinates one takes the spatial metric to be conformally flat,
which we can always do in spherical symmetry (not so in general)

Dds’ = hdx'dx’ =g* |, dx'dx|=g*[dr® +r*dQ?

dQ* =dé” +sin’ K¢r
The full 4-metric we can thus be written as
dt* +2¢* Adrdt + ¢ |dr? + r’dQ*

with all metric functions a,8and g depending on r and t.




Maximal slicing

The maximal slicing gauge condition is obtained by demanding that the
trace of the extrinsic curvature K=0 for all time

= this condition seems “strange” at a first glance, as we just showed that the
evolution of K is governed y the Einstein equations, so how can we choose
that its trace be 07

answer is that the trace of 9K;/at contains the Laplacian of the lapse, so by
choosing the Ia_Pge to satlsfh that equation with K and dK/at set to zero, we find
a time slicing (if it exists) where K =0:

ximal and isotropic conditions we've exhausted all gauge
freedom, h we've done so in a non-traditional manor; laced
conditions on the spatial metric and extrinsic curvature, rather than the
lapse and shift

= in spherical symmetry there are only 2 independent components to K; ; with the
choice K=0we've eliminated 1, and it will turn out to be more economical in the
equations to simply substitute in the definition K; in terms of the metric

this will also put the momentum constraint ec&uation into the form of an elliptic
equation for the shift vector, clearly showing that we don't have any more
coordinate freedom left

Evolution equations

K=0 gives the only metric evolution equation :
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Constraint and Slicing Equations

first, as before, we introduce the following variables for the gradients of the scalar
field (excuse the slight change in notationt)

&rp=9,®; N(y=y¢’/al
The Hamiltonian constraint is
2
LW P B 2 M2
+——+—| — -= r +I1 0
‘/’ r 12| a B' r ﬂl/l[gt ]
The momentum constraint is
"+(ﬂ'_£)z+%_i +127m;m_
rr ¢ Y

The maximal slicing condition is

Evolution strategy

Notice that we have two independent equations for ... therefore have two
choices for how to evolve the equations

fully constrained evolution : solve all three elliptics at each time step (ex’)licitly
shows that there is no gravitational dynamics in spherical symmetry ... all the
dynamics comes from the coupling to the scalar field)

partially constrained evoluti solve the elliptics for the lapse and shift, but
evolve the conformal factor with the hyperbolic equation

Will only get the same, consistent solution to the field equations in a
partially constrained evolution /f

initial conditions for W are supplied by a solving the Hamiltonian constraint

consistent boundary conditions are employed is is not easy to do, and in
practice there will often be an O(1/R) level inconsistency, where R is the location
of the outer boundary (so choose R sufficiently large so that this error is small)

During a fully constrained evolution if a black hole forms and excision is
employed, will only get a consistent solution if the evolution equation for
is used to set the inner boundary condition




Boundary conditions

Beginning from smooth initial data, i.e. no black holes, there are
two classes of boundary conditions

= (a) Outer boundary conditions at r= R

demand that the metric is asymptotically flat

w(r=R,t)=1+a°T(t)+o(i)

acr =R,t)=1+@+o(i)

B =R,t)=coT(t)+o(ri2

and as in project 1, place (aJJproximate) outgoing radiation (Sommerfeld)
conditions on the scalar fiel

Project 2

A handout describing the spherically symmetric Einstein Klein
Gordon equations is available on the web

Interested students can go through this from the beginning, though
that would be a rather lengthy endeavor

Alternatively, a working RNPL + Fortran code (to handle the
elliptics) is given, up to “problem 5”. The suggestion would then be
to continue with problems 6 & 7:

= study black hole formation

= explore the early stages of critical phenomena at the threshold of black
hole formation

Next lecture : adaptive mesh refinement, ﬁarallelization, the
AMRD/PAMR software packages, critical phenomena example
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Boundary conditions

Beginning from smooth initial data, i.e. no black holes, there are
two classes of boundary conditions

= (b) Regularity at r=0

the metric is sin?ular at the origin, however this is just an artifact of having
chosen spherical polar-type coordinates

therefore, demand that solutions be regular at r=0; i.e., this is nota
boundary condition in the traditional sense, as we're sofving the equations
within a spherical-like volume of radius R, and r=R is the only boundary in
the physical problem

here (and this is quite typical for regularity conditions) all regular fields will
have eitheran even or odd power series expansion about r=0 of the form

f.(r =0,t) =a,(t) +a,(t)r> +a,tr +...
f,(r =0,t) =l (Or +b,t)r’ +...

thus, for even functions place a Neumann condition, for odd functions a
Dirichlet condition

= Here, o, M and Y have Neumann conditions, B and & Dirichlet




