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spacecraft 
trajectories 

Cassini-Huygens 
trajectory around 
Saturn, 2004-2008



Planetary orbits 

lines = current orbits of the 
four inner planets 

dots = orbits of the inner 
planets over 50,000 years, 
4.5 Gyr in the future

Ito & Tanikawa (2002)



Cosmological simulations
Springel et al. (2005)



orbits of stars near the 
Galactic center 

Eisenhauer et al. (2005)

Galactic dynamics
1000 AU

box and tube orbits in a 
galactic potential 



Large Hadron Collider



~100 orbits

~106 orbits

~109 orbits

~1010 orbits

~100-1000 orbits
~100-1000 orbits
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Consider following a particle in the force field of a point mass. 
Set G=M=1 for simplicity. Equations of motion read

Examine three integration methods with timestep h:

1. Euler’s method

Euler methods are first-order; leapfrog is second-order; Runge-
Kutta is fourth order

To keep the playing field level, use equal number of force 
evaluations per orbit for each method (rather than equal 
timesteps)

3. leapfrog 
2. modified Euler’s

4. Runge-Kutta method 



eccentricity = 0.2

200 force 
evaluations per 
orbit

plot shows 
fractional energy 
error |∆ E/E|



Liouville’s theorem

The flow in phase space generated by a dynamical 
system governed by a Hamiltonian conserves 
volume
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A geometric integration algorithm is a numerical 
integration algorithm that exactly preserves some 
geometric property of the original set of 
differential equations 

Volume-conserving algorithms:
• conserve phase-space volume, i.e. satisfy Liouville’s

theorem
• appropriate for Hamiltonian systems
• e.g. modified Euler, leapfrog but not Runge-Kutta



Energy-conserving algorithms:
• conserve energy, i.e. restrict the system to a surface of 

constant energy in phase space 
• appropriate for systems with time-independent 

Hamiltonians, e.g. motion in a fixed potential 
• does not include modified Euler, leapfrog, Runge-Kutta

Time-reversible algorithms:
• integrate forward in time for N steps, reverse all velocities, 

integrate backward in time for N steps, reverse velocities, 
and the system is back where it started 

• appropriate for time-reversible systems, e.g. gravitational 
N-body problem 

• includes leapfrog but not modified Euler or Runge-Kutta



Symplectic algorithms:
• if the  dynamical system is described by a Hamiltonian H(q,p) 

then

• if y(t)=[q(t),p(t)] then the flow from y(t0) to y(t1) generated 
by a Hamiltonian is a symplectic or canonical map

• an integration method is symplectic if the formula for 
advancing by one timestep

yn+1=yn+g(tn,yn,h)
is also a symplectic map, i.e. if it can be generated by a 
Hamiltonian 

• for one-dimensional systems symplectic = volume-conserving 
(actually area-conserving)

• for systems of more than one dimension symplectic is more 
general 

• modified Euler and leapfrog are symplectic

dq

dt
=

∂H

∂p
;

dp

dt
= −∂H

∂q



The motivation for geometric integration algorithms 
is that preserving the phase-space geometry of 
the flow determined by the real dynamical 
system is more important than minimizing the 
one-step error
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Geometric integrators for cosmology

Drift and kick operators correspond to motion under HA and HB: 

As Volker showed, the Hamiltonian in comoving coordinates is

x0i = xi +
pi
mi

R t+h
t

dt0
a2(t0) , p0i = pi − Gmimj(xi−xj)

|xi−xj |3
R t+h
t

dt0
a(t0)



Geometric integrators for planetary systems

To follow motion in the general potential Φ(r,t) we may use the 
Hamiltonian splitting

In this case a much better split is 

Motion of a test particle in a planetary system is described by 



The workhorse for long orbit integrations in planetary systems is 
the mixed-variable symplectic integrator (Wisdom & Holman 1991)

• integrate HA and HB using leapfrog 

•motion under HA is analytic (Keplerian motion) and motion under 
HB is also analytic (impulsive kicks from the planets)

• this is a geometric integrator (symplectic and time-reversible)

• errors smaller than leapfrog by of order mplanet/M* � 10-4

• long-term errors reduced to O(mplanet/M*)2 by techniques such as 
warmup (start with small timesteps and adiabatically change them)



The workhorse for long orbit integrations in planetary systems is 
the mixed-variable symplectic (MVS) integrator (Wisdom & 
Holman 1991)

• what it does well: long (up to Gyr) integrations of planets on orbits that 
are not too far from circular and don’t come too close

• what it doesn’t do well: close encounters and highly eccentric orbits 

The most popular public software packages for solar-system and 
other planetary integrations are MERCURY (John Chambers)  and 
SWIFT (Hal Levison, Martin Duncan) – URLs are on the wiki

• include several integrators: MVS, Bulirsch-Stoer, Forest-Ruth, etc. 

• can handle close encounters + test particles

• can include most important relativistic corrections

Following 9 planets for 106 yr takes about 30 minutes



eccentricity of Mercury over 5 Gyr from 2,500 integrations 
differing by < 1 mm in semi-major axis of Mercury 

(Laskar & Gastineau 2009)
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Leapfrog with variable timestep (1)

• we want to allow a variable timestep that depends 
on phase-space position, h= τ (r,v)

• time-reversible integrators have almost all the 
good properties of symplectic integrators

• define a symmetric function s(h,h’), e.g. 
s(h,h’)=(h+h’)/2

This is time-reversible but not symplectic



e=0.5

200 steps per orbit

|∆
E/

E|



Leapfrog with variable timestep (2)

Time transformation:
• we want to allow a variable timestep that depends on phase-

space position h= τ (q,p)
• introduce a new time variable t’ by  dt = τ (q,p) dt’ ; then unit 

timestep in t’ corresponds to desired timestep in t
• introduce extended phase space Q=(q0,q) with q0=t and 

P=(p0,p) with p0=-H. Then set
H’(Q,P) = τ (q,p)[H(q,p)+p0]

If (q,p) satisfy Hamilton’s equations with Hamiltonian H and 
time t, then (Q,P) satisfy Hamilton’s equations with 
Hamiltonian H’ and time t’

• works very well on eccentric orbits but only for one particle 
(can’t synchronize timesteps of different particles)



Leapfrog with variable timestep (3)

• we have a general differential equation dy/dt = f(t,y) that is 
known to be time-reversible

• we want an integration scheme that is time-symmetric with a 
variable timestep that depends on y, h= τ (y)

• define a symmetric function s(h,h’), e.g. s(h,h’)=(h+h’)/2
• pick your favorite one-step integrator, yn+1=yn+g(yn,h) (e.g. 

Runge-Kutta)
• introduce a dummy variable z and set zn=yn at step n

This is time-reversible (Mikkola & Merritt 2006) 



What has been left out

• individual timesteps
• regularization (Burdet, Kustaanheimo-Stiefel, etc.)
• non-geometric methods for N-body integration (e.g. Hermite

methods, multistep and multivalue methods)
• roundoff eror
• homework
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